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a b s t r a c t

In recent decades, Photovoltaic (PV) energy has made significant progress towards meeting the
continuously increasing world energy demand. Besides that, the issue of conventional fossil fuels
depletion as well as environmental pollution both contribute to the growth of PV technology. However,
the deployment and implementation of photovoltaic systems remain as a great challenge, since the PV
material cost is still very high. The low PV module conversion efficiency is another factor that restricts
the wide usage of PV systems, therefore a power converter embedded with the capability of maximum
power point tracking (MPPT) integrated with PV systems is essential to further the technology. This
paper provides a comprehensive review of the available MPPT techniques, both the uniform insolation
and partial shaded conditions. In order to appreciate the knowledge of MPPT concepts, several types of
PV cell equivalent models are explained too. Conventional MPPT techniques have proven the ability to
track the maximum power point (MPP) under uniform solar irradiance. However, under rapidly
changing environments and partially shaded conditions, conventional techniques have failed to track
the true MPP. For this reason, stochastic based methods and artificial intelligence have been developed
with the ability to seek the true MPP under multiple peaks with good convergence speed. This paper
analyses and compares both conventional and stochastic MPPT techniques based on the true MPP
tracking capability, design complexity, cost consideration, sensitivity to environmental change and
convergence speed. Comparatively, the stochastic algorithms and artificial intelligence show excellent
tracking performance. The research on MPPT techniques is ongoing towards achieving a better
performance in terms of the ease of implementation, low system cost and better tracking efficiency.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Up to date, the photovoltaic (PV) power generation has shown a
significant potential in fulfilling the growing world's energy demand.
Up to the year 2011, global operation of solar power generation has
risen up to 70 GWp, in which almost 30 GWp solar power came into
the market in 2011 [1,2]. In year 2012, the total PV operating capacity
has increased to 100 GWp [3]. Solar energy has gained much popu-
larity as it is a form of renewable energy with many advantages. In
Malaysia, sunshine is available throughout the year. Solar energy offers
no fuels costs, no pollution and needs little maintenance. There are
many applications of PV system that have been developed and
reported [4,5]. However, the deployment and implementation of
photovoltaic systems still remains a great challenge due to the very
high initial investment cost. It is not only the cost of PV array that
needs to be considered, but also the cost of equipment for energy
conversion that should be taken into account. This means that the
energy produced by PV is relatively high as compared to conventional
energy production. Furthermore, there is no guarantee that the energy
produced from PV array keeps constant, because it depends entirely
on the solar irradiance and the ambient temperature. Second, the
energy produced by the sun is restricted by the low PV module
conversion efficiency. In short, a power converter embedded with the
capability of maximum power point tracking (MPPT) is essential in all
PV systems to ensure the best energy harvesting from the prevailing
environmental conditions.

There have been many studies made on MPPT techniques. For
instance, the perturb and observation (P&O) [6–22] and the hill
climbing (H&C) [6,23–30] technique are widely used as MPPT due to
the simple implementation and also fewer sensor requirements. The
incremental conductance (IncCond) algorithm [31–41], which com-
pares incremental and instantaneous conductance of PV arrays, is able
to track the maximum power point of a PV system and transfer high
PV energy to the load. Ripple correlation control (RCC) [42–44] has
introduced ripple into the control strategy by the aid of switching the
converter to control the MPPT. This technique performs well at high
solar irradiance but the tracking efficiency drops at low sun irra-
diance. Alternatively, by shedding the load of the PV array, the current
and voltage at the maximum power point (MPP), IMPP and VMPP, of
the PV system can be determined by short-circuit current, ISC [45–48]
and open-circuit voltage, VOC [49–55] techniques. However, the main
drawback of this MPPT is the uncertainty which exists in this tracking
method as shown by the approximate relationship of ISC to IMPP and
VOC to VMPP.

In recent years, further research on PV MPPT has been con-
ducted and the effect of partial shading has been taken into
account. Researchers have found that the conventional methods
show very poor tracking performance and many of them are not
even able to track the true MPP under partially shaded PV array.
Due to the drawbacks of conventional MPPT algorithms, several

stochastic-based algorithms and artificial intelligence techniques
have been developed. These new MPPT algorithms, inspired by
nature and biological structure, have been developed to maximize
output power from PV array. They include: particle swarm optimi-
zation (PSO) [56–61], differential evolution (DE) [62], genetic algo-
rithm (GA) [63] and artificial neural network (ANN) [59,64–66].
Besides that, the fuzzy logic controller (FLC) [66–72], which is based
on the logical interpretation of data, can find the solution to extract
the maximum power under partially shaded and rapidly varying
atmospheric condition. To date, there are many research papers which
have discussed and compared the operation of each of MPPT
technique. Nevertheless, the literature reviews are not up to date
and do not cover all available MPPT techniques for both uniform and
partial shaded conditions. Thus, this paper is written to review the
available MPPT techniques comprehensively, include both uniform
and partial shaded conditions.

This paper is organized as follow, where the next section
describes the brief concept of four PV cell models. The next section
provides an overview of the characteristic of partial shading
followed by explanation of the MPPT techniques. The MPPT
techniques are divided into two categories: the conventional
method for uniform solar irradiance, and the stochastic-based
algorithm and artificial intelligence techniques for partial shading
conditions. Finally, comparison and discussion on the character-
istics of MPPT techniques are clarified and conclusions are drawn.

2. Photovoltaic characteristics

Photovoltaic originates from two separate words- photo, which
means light, and voltaic, that refers to the generation of electricity
[73]. Therefore, ‘photovoltaic’ brings the meaning of producing
electricity directly from the sun. Solar arrays consist of several
combinations of solar modules, where each module is made up from
a number of solar cells. It is noted that solar cells are made from layers
of semiconductor material, which are commonly made from crystal
silicon [73].

From the literature, there are few types of equivalent circuit
models to represent PV cells. A well-known circuit model is the
generic model which has single diode with a series resistance and a
shunt resistance [74,75]. As shown in Fig. 1, the amount of electrical
energy produced by PV is represented by the current Iph, which is
proportional to the solar irradiation. The series resistor represents an
internal resistance while the shunt resistance represents the leakage
current.

The mathematical equation that expresses the PV cell is given
in as follows:

IPV ¼ IPh� ID�
VD

Rsh
ð1Þ
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The diode characteristic is expressed by

ID ¼ I0 ðeVD=VTA�1Þ ð2Þ
The diode voltage is expressed by

VD ¼ ðVPVþ IPVRsÞ ð3Þ
Photocurrent IPh is given by

IPh ¼ ðISCþ K1ðT�TRef ÞÞλ ð4Þ
The variables are defined as follows
I0 is the cell saturation of dark current, VT is the thermal voltage

of PV modules which is equal to kT/q, q is the electron charge
(1.6�10–19 C), k is the Boltzman constant which is equal to
1.38�10–23 J/K, T is the temperature of p–n junction in unit Kelvin,
A is the diode ideality factors which depend on the PV technology,
ISC is the cell's short- circuit current at standard test condition
(1000 W/m2 and 25 1C), K1 is the coefficient of the cell's short-
circuit current, TRef is the cell's reference temperature, λ represents
the solar irradiance in unit W/m2.

Another PV model which is more accurate to describe PV cell
behaviour is the two-diode model [76,77] as shown in Fig. 2. The
two-diode model consists of the photocurrent, two parallel diodes,
a shunt resistor and a series resistor. The mathematical expression
of this model is given by

IPV ¼ Iph� ID1� ID2�
VD

Rsh
ð5Þ

where

ID1 ¼ I01ðeVD=VTA1 �1Þ ð6Þ
and

ID2 ¼ I02ðeVD=VTA2 �1Þ ð7Þ
while VDiode1¼VDiode2¼VD. The variables, A1 and A2 are the diode
ideality factors, which depend on the PV technology, for diode
1 and diode 2, respectively.

The two-diode PV cell model, however, requires more para-
meters to be considered than the single diode model. Moreover,
due to the implicit and non-linear behaviour of the PV model, the
model is rarely used. Recently, Ishaque et al. [78] have introduced
a simple and fast two-diode photovoltaic model that able to
reduce the computational time, as shown in Fig. 3. The model
can be expressed as

IPV ¼ IPh� I0 ðIp þ2Þ�VD

Rsh
ð8Þ

where

IPh ¼ ðeVD=VT þeVD=ðP�1ÞVT Þ ð9Þ

and

p¼ 1þA2

since

ðA1þA2Þ=p¼ 1 and A1 ¼ 1 ð10Þ
where A1 and A2 are the diode ideality factor for diode 1 and diode
2, respectively.

The shunt resistance, Rsh, can be represented as an open-circuit
because its value is too large as compared to the series resistance
[76], as shown in Fig. 3. Therefore, the variation of the Rsh brings
negligible impact on the PV model output; however even a small
variation of the Rs would affect the PV efficiency. The mathema-
tical expression is given by:

IPV ¼ IPh� ID ð11Þ
and ID refers to (2)

When considering the ideal PV cell, the series’ losses are zero
(Rs¼0) and the leakage to ground is negligible, Rsh¼1, hence the
effect of these two parameters can be neglected. Mathematical
expression in (1) is rewritten to express simplified model in Fig. 4.

IPV ¼ IPh� I0 eVPV=VTA�1
� �

ð12Þ

Figs. 5 and 6 show the P–V and I–V characteristics of a generic
PV array. Both characteristics show that the output of PV array
is non-linear, which governed by the solar irradiance. Under
the condition of full illumination, there is only one peak on the
P–V characteristic. However, when partial shading occurs, the PV
characteristics change so that multiple peaks exist.

Fig. 3. The single diode model of PV cell without shunt resistance.

Fig. 4. The simplified model of PV cell without series and shunt resistance.
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Fig. 5. The P–V characteristic of a typical PV array.Fig. 2. The two-diode model of PV cell.

Fig. 1. The single diode model of PV cell.
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3. The effect of partial shading

In PV systems, the PV output power generated depends on
solar irradiance and the ambient temperature. These two factors
determine the true Maximum Power Point (MPP). In general,
temperature influences the PV output voltage while solar irradi-
ance affects PV output current [79]. In other word, when PV array
receives high solar irradiance, the output current is high, and vice
versa. Based on the I–V and P–V characteristic curves, there is only
one optimum point which delivers the maximum power to the
system.

Due to the non-linear characteristic of PV array, the energy
produced from PV array is not constant. In any case, where some
parts of PV array are shaded by a nearby tree, chimney, or cloud,
partial shading condition would occur. Under partial shading
conditions, the shaded region of PV receives less intensity of
sunlight as compared to other region. The shaded PV module
would absorb a large amount of the electric power that is
generated by the non-shaded PV modules. This scenario is called
the hot spot problem, and can damage PV cells [62,66,70].
To overcome this, a bypass diode is commonly connected in
parallel with each PV module in order to provide an alternative
path during partial shading, helping to avoid damage of PV
module. Nevertheless, the insertion of a bypass diode causes the
existence of multiple peaks on the P–V and I–V characteristics.

Fig. 7 and Fig. 8 show the characteristics of PV under the uniform
solar irradiance and partial shading condition.

Referring to Figs. 7 and 8, it can be observed that the P–V
characteristics consist of multiple peaks and the I–V characteristic
has multiple steps due to partial shading. Among the multiple
peaks, there is only one global peak (GP), which is the true MPP,
while others are the local peaks (LP).

4. Maximum power point tracking

Based on the I–V curve, it can be seen that the PV operating
point may vary from zero to the open-circuit voltage. The operat-
ing point does not always stay at the maximum power point but
varies with load. Therefore, the system does not always supply the
fullest available solar energy to the load. A very simple approach
can be taken to solve this problem by increasing numbers of PV
modules in the system, which is more than the required capacity.
Nevertheless, this will increase the system cost and energy losses
[80]. In order to solve this problem, a revolutionary type of power
electronic device, MPPT, is introduced to determine the maximum
operating point. A PV system that connects to an MPPT controller
is able to search for the MPP and make best use of the PV array.
With that, the PV system is assured to continuously operate at the
true MPP [80].

Various MPPT algorithms have been developed for PV systems.
These can be categorised into conventional techniques and recent
development which are based on stochastic technique. The former
technique has been developed and shows good performance to
track the MPP under uniform solar irradiance. However, under
rapidly changing environment and partial shading condition, the
conventional MPPT algorithms failed to track the global peak.
Hence, stochastic based and artificial intelligence methods have
been developed to extract the optimum power from a PV system
under any atmospheric condition, including partial shading. The
important criterion when choosing an algorithm is the capability
of it to track the true MPP among the local peaks with cost and
convergence speed considered. The list of MPPT algorithms is
shown in Table 1.

In this paper, the presentation of the MPPT algorithms is
organized into two categories. In the first part, the conventional
MPPT algorithms which can work satisfactorily under uniform
solar irradiance are discussed. In the second part, the MPPT
algorithms based on stochastic algorithms which can work satis-
factorily under both uniform sun irradiance and partial shading
are explained.
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4.1. Conventional MPPT Algorithms

4.1.1. Perturb and observation
The application of the perturb and observation (P&O) algorithm

has been widely used due to ease of implementation. Initially, the
present value of the PV voltage and the PV current are sensed to
obtain the PV power. In the P&O algorithm, the voltage of the PV
array output is perturbed by a small increment which results in a
change of power, ΔP. If the ΔP is positive, the perturbation will
move the operating voltage toward the MPP. Then, the perturba-
tion size (C), is generated in the same direction. In case of a
negative ΔP, the system is operated far from the optimal point,
thus the perturbation size needs to be reduced in order to bring
the operating point back to the MPP [19,80–82]. The flow chart of
the P&O MPPT algorithm is presented in Fig. 9.

Based on the flow chart, when the instantaneous PV power
increases with the operating voltage, the operating point is
moving towards the MPP. This means the perturbation size is
positive or remains unchanged. When the instantaneous PV power
reduces while the operating voltage also reduces, the operating
point is moving away from the MPP. Therefore, the perturbation
size is reverted to force the operating point back to the true MPP.
The drawback of this algorithm is that the tracking efficiency
reduces under rapidly environmental change. The MPPT is not able
to determine the actual maximum point. It oscillates around the
MPP continuously and changes the sign of perturbation after
measurement of ΔP. Besides that, in the case of varying solar
irradiance, the P&O fails to determine the true MPP [82].

4.1.2. Incremental conductance
The incremental conductance MPPT algorithm is based on the

dP/dV, which equals to zero at the point of the MPP. Referring to
Fig. 10, the gradient at the MPP point is zero, correspondingly, a
positive gradient on the left of the MPP and a negative gradient on
the right of the MPP. The power gradients can be summarized as

dP=dV ¼ 0 at MPP
dP=dV40 left of MPP
dP=dVo0 right of MPP

From the I–V and P–V characteristics,

dP
dV

¼ dðIVÞ
dV

¼ IþV
dI
dV

ffiV
ΔI
ΔV

ð13Þ

Thus, the point of dP/dV can be written as

ðΔI=ΔVÞ ¼ � I=V ; at MPP
ðΔI=ΔVÞ4� I=V ; left of MPP
ðΔI=ΔVÞo� I=V ; right of MPP

The IncCond algorithm starts the cycle by obtaining current
value of V and I at V(t) and I(t). Based on the flow chart as shown in
Fig. 11, MPP can be tracked by comparing instantaneous conduc-
tance (I/V) to the incremental conductance (ΔI/ΔV): Control signal
voltage, Vref, is adjusted too- it needs to be decreased or increased
based on output of the comparison above. The MPP is reached
once the Vref is equal to VMPP. At this point, the algorithm will stop
operating and store the value unless any environmental changes
are detected a change in ΔI. The algorithm will re-calculate until

Fig. 9. The flow chart of perturb and observe MPPT algorithm.

Table 1
The MPPT algorithms under uniform and partial shading condition.

MPPT algorithms

Uniform irradiance condition Partial shading condition

a. Perturb and observation
b. Hill Climbing
c. Incremental conductance
d. Fractional voc
e. Fractional Isc
f. Ripple correlation control
g. Current sweep
h. DC link capacitor droop control
i. Load current or load voltage maximization
j. dP/dV or dP/dI feedback control.

a. Particle swarm optimization
b. Genetic algorithm
c. Differential evolution
d. Artificial neural etwork
e. Fuzzy logic controller
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optimum point is obtained [34]. The incremental size determines
how fast the MPPT algorithm searches for the MPP. Large incre-
mental size helps to reduce the duration of tracking process;
however, the system will operate not only at the point of MPP but
oscillate about this point [83].

The IncCond offers the advantage of better performance under
rapidly varying atmospheric conditions as well as lower oscillation
around MPP. However, the efficiency of IncCond to achieve MPP is
about the same as the P&O method [79]. The drawback of this
method is, under partial shading condition, it is not able to track
the global MPP. Finally, the control circuitry of IncCond is complex
which leads to a high system cost.

4.2. Hill climbing

The hill climbing (HC) algorithm is basically the same as the
P&O, in that it regulates the PV voltage to follow the optimal

setting point (VMPP). The HC algorithm focuses on the perturbation
of the duty-cycle of its power converter to find the MPP. The
optimal point is continuously tracked and updated by the algo-
rithm until the MPP, defined as dP/dV¼0, is found. The current
value of the PV power P(k) is constantly compared to the previous
calculated measurement, P(k�1). If the value is the same, the
controller will sense the PV voltage and PV current again; however,
if the current power is greater than the previous value, the slope is
complemented. The switching duty-cycle of the power converter
keeps changing until the operating power oscillates at the
MPP [27].

The HC algorithm provides an advantage in its simplicity of
operation. The drawback of this method is that it fails to track the
MPP under rapidly changing environmental conditions. Much
research has been undertaken in order to improve the tracking
performance of HC. For instance, Xiao and Dunford [30] intro-
duced the modified adaptive hill climbing MPPT Method by
including an automatic parameter to tune the system as well as
control mode switching so that the algorithm can be applied
under various environmental changes. Literature in [25] intro-
duced a digital hill climbing method combined with a bidirectional
current mode power cell for space application. The results show
that the MPPT was a promising principle to gain maximum power
from PV array. The flow chart of the hill climbing algorithm is
shown in Fig. 12.

4.2.1. Open-circuit voltage and short-circuit current
The open-circuit voltage, VOC [83] MPPT algorithm is a simpli-

fied technique in off-line (stand-alone) application. This method
applies an approximately linear relationship between the open-
circuit voltage and the maximum output voltage (VMPP) of PV array
under varying atmospheric conditions. This method can be
approximated by

VMPP � kVoc ð14Þ

where k is a constant that varies between 0.7 and 0.8 depending
on the PV cell characteristic. Fundamentally, it is empirically
measured based on the VMPP and VOC after determining the value
of k under changing atmospheric condition.

Fig. 12. The flow chart of Hill Climbing MPPT algorithm.
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Fig. 10. The location of the true MPP under the P–V characteristic curve.

Fig. 11. The flow chart of incremental conductance MPPT algorithm.
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The VOC is measured by shedding the load of the PV array,
allowing VMPP to be approximated. Although this MPPT is simple
in the implementation, Eq. (14) is only an approximation, so the
accuracy of the PV array operating at the MPP is not high. This is a
disadvantage of this method, as well as the fact that the circuit
operation might be interfered with by the periodic shedding of
the load.

Another simplified off-line method is the short-circuit current
technique, in which its operation is similar to the open-circuit
voltage technique [83]. The approximately linear relationship
between short-circuit current ISC, and the current at maximum
power point, IMPP, is expressed by following equation:

IMPP � kISC ð15Þ
where k is a constant that is generally within the range of 0.8 to 0.9.
Similar to the VOC method in measuring ISC, load has to be shed. Then,
IMPP can be determined. This method is much more accurate compare
to VOC but it requires higher cost of implementation.

4.3. Ripple correlation current

Connecting the PV array to a DC–DC converter would create
voltage ripple and current ripples due to the switching action of
the converter. Therefore, the PV power produced would contain
ripples which may affect the performance of the PV system. Refs.
[43,44] reported on the ripple correlation control MPPT technique
and its implementation. In order to reach the MPP, the power
gradient must be zero. In order to achieve that, the RCC correlates
between derivatives of the PV array power, varying _P versus
current, i or voltage, ~V which are both varying in time.

If either the PV current or voltage increases, the PV power also
increases (_P

Ã
Ä
a
Ã
A 0) in which the operating point always

operates less than the MPP (VoVMPP or ioIMPP). In contrast, when V
or i increases but P decreases (_Po0), the operating point is over the
MPP (V4VMPP or i4IMPP). Thus, combining these operations, _Pi or _P ~V
are positive on the left side of the MPP, zero at the MPP, and positive
on the right side of the MPP. The voltage and current of the power
converter can be increased or decreased depending on the type of
power converter, thus the duty ratio can be controlled as:

dðtÞ ¼ � k3

Z
_P _V dt ð16Þ

or

dðtÞ ¼ k3

Z
_Pi dt ð17Þ

the RCC technique does not depend on the PV array parameters and it
is able to track the correct MPP by controlling the duty-ratio of the
power converter.

The RCC provides advantages of simple and less expensive
analogue circuitry while quickly tracking the MPP in rapid envir-
onmental changes. Nevertheless, switching the frequency of the
power converter limits the time taken by the controller to
converge to the MPP [83]. Moreover, at low solar irradiance, this
MPPT technique has the drawback of low tracking capability as it
requires large tracking steps near the MPP.

4.4. Stochastic based MPPT algorithms

4.4.1. Particle swarm optimization
The particle swarm optimization (PSO) is an algorithm that

was proposed by J. Keneddy in 1995, which was inspired by the
behavior of organisms such as a flock of birds and a shoal of fish.
The concept of how they use their physical movement to adapt to
the environment, by competition and cooperation, is adaptable for
the optimization solution [57,84].

A number of particles move in a search space to find the best
solution. The movement is adjusted by following the best found
solution while trying out new solutions. To meet the optimal
solution, the position of the particle has to follow the best position
of the particle or the neighbour best position.

Position update and velocity update are the operators that
govern the PSO, given by the following equations.

The velocity update is given by

Vkþ1
i ¼wVk

i þ c1r1ðpbesti� xki Þþ c2r2ðgbesti� xki Þ ð18Þ
while the position update is expressed by

xkþ1
i ¼ xki þVkþ1

i ð19Þ
where,

Vk
i : current particle velocity, Vkþ1

i : particle velocity update, w:
inertia weight, c1: influence of individual learning rate, c2: influ-
ence of social learning rate, pbesti: the best position found by the
particle, gbesti: the best solution found by the swarm, c1 and r2:
two uniformly distributed random values to add randomness to
particle movement, xki : current particle position, xkþ1

i : particle
position update.

The movement of particle to find optimal solution is given by
Fig. 13 while the flow chart of the PSO is given in Fig. 14.

Assume that a PV array has an N number of modules and is
connected in series. Partial shading occurs on one of the PV
modules. Thus, the voltage of a shaded PV module will be different
from an unshaded module. Under this condition, multiple local
maxima will occur on PV characteristic. The PSO MPPT reaches the
optimal output when the global voltage is achieved.

In order to start the optimization, which is to find the global
voltage in P–V characteristic, the parameters of PSO need to be
specified. These parameters include the variable dimensions that
need to be optimized (voltage and power), swarm size and
maximum iterations. The process is shown in Fig. 14. The global
voltage Vg with swarm size, NP can be defined as

xki ¼ Vg ¼ ½Vg1; Vg2; Vg3;…;Vgj�
j¼ 1;2;3;…;NP

ð20Þ

The best position (best value of power and voltage) that has
PSO found so far is stored in pbest and it keeps updating until
achieving objective function.

pbesti ¼ xki ð21Þ
The objective function is to find the maximum operating power

in the system corresponding to its maximum voltage, which can
Fig. 13. An illustration of the particles movement in particle swarm optimization
MPPT algorithm.
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be defined as

f ðxki Þ4 f ðxkþ1
i Þ ð22Þ

where f function is the operating power of the PV array.
As partial shading causes the PV power changing, thus to find

the optimum power, particles need to re-initialize to find the
global maximum power point by the following condition:

P xiþ1
� ��PðxiÞ

PðxiÞ

����
����4ΔP ð23Þ

The re-initialization of each particle is significant in the PSO
algorithm in order to identify each module that has the optimal
terminal voltage [56]. Thus, the pbest and gbest can be updated
automatically when there is a sudden change of solar irradiance or
temperature. Therefore, the total output power of the PV system
can be optimized. The PSO algorithm has been developed and
modified by many researchers [56–60,85,86] in order to improve
its tracking performance under partial shading condition. The
MPPT controller based PSO algorithm was first introduced by
[56] which proposed PSO algorithm for multiple PV arrays. This
multidimensional search-based technique uses only one pair of
sensors (voltage and current transducers). It is capable of detecting
global maximum power point under partial shading conditions,
where its reachability to global MPP is good. The author compared
the performance of the PSO technique in tracking maximum
power with the conventional hill climbing technique. The results
showed that the PSO was able to track and measure PV energy 80%
higher than the hill climbing with faster tracking time. The author
[60] had improved the PSO algorithm for PV MPPT by adding
another term in PSO algorithm. The term acts as repulsive force to
the PSO agent to find the best voltage at any environmental
changes. Thus, PSO MPPT is able to be more responsive to frequent
change of solar irradiation. Comparing this to previous work,

without adding the repulsive force, improvements on the PSO
algorithm result in higher efficiency. By studying the character-
istics of the PV in terms of voltage and power, authors in Ref. [85]
had modified the conventional PSO. The author proposed modified
particle swarm optimization for PV systems under extreme envir-
onmental condition. Maximum change in velocity had been
restricted to a certain value determined by the study, while a
random number of acceleration factors in conventional PSO
equation had been removed. The performance of the proposed
algorithm is compared with hill climbing algorithm, and the
results show that the proposed algorithm has faster tracking
speed and almost zero steady-state oscillation as compared with
that of hill climbing algorithm. Overall, the study reveals that this
algorithm is robust and fast in tracking the global MPP compared
to the conventional method. Besides that, this algorithm works
efficiently in searching the global peak under complex partial
shading conditions.

4.4.2. Fuzzy logic controller
The concept of fuzzy logic is based on applying expert knowl-

edge in designing a fuzzy logic controller. It does not require any
technical knowledge for the exact model, while its simplicity of
the design gives it an advantage in tracking its maximum power
point under varying atmospheric conditions. It deals with impre-
cision and information granularity in the form of linguistic con-
structs such as “many”, “low”, “medium”, “often” and “few” [67].

The FLC consists of four stages; fuzzification, rule base, infer-
ence engine and defuzzification as shown in the FLC block diagram
in Fig. 15. During the fuzzification stage, the membership function
values are assigned into linguistic variables. The number of
linguistic variables assigned is user-defined depending on the
accuracy of the desired output. For the five fuzzy rule bases,
linguistic variables can be Negative Big (NB), Negative Small (NS),
Zero (Z), Positive Small (PS) and Positive Big (PB). Higher numbers
of linguistic variables produce more stable and accurate results in
the design [66]. However more precise results require a longer
time to solve. The type of membership function can also be varied.
They can use either trapezoidal, triangular or Gaussian but
normally the triangular shape is used as shown in Fig. 16, while
the range of membership functions, the parameter a and b, and the
number of membership functions can be decided by previous
knowledge of proposed scheme parameters [70]. Otherwise, it can
be selected by trial and error method based on user knowledge
provided that the input data can cover the appropriate region of
interest [87].

From the diagrams, inputs of fuzzy are variable which are
usually an error, E and change in error, ΔE. Calculation of error and
change in error is flexible depending on the user, however, to have
dP/dV at MPP, the approximation can be defined as

EðxÞ ¼ P xð Þ�Pðx�1Þ
V xð Þ�V ðx�1Þ ð24Þ

ΔEðkÞ ¼ EðkÞ�Eðk�1Þ ð25Þ

where x is the sampling time while P(x) is the instantaneous
power of the PV system and V(x) gives the corresponding instan-
taneous voltage. The E(x) value will show the location of the
operating load power point whether on the left or right side of the
MPP or at the point of the MPP. The ΔE(x) indicates the moving
direction of the operating power point.

The inputs of E and ΔE are then calculated and converted to
linguistic variables which generate the output, D from the look up
rule base table, as in Table 2. Another advantage of using the FLC, is
the gap for each operating point for the membership function can
be adjusted in order to get the optimum MPPT. The membership

Fig. 14. The flow chart of particle swarm optimization for MPPT.
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function can be denser at the middle to get more precise output
[68].

The fuzzy output is associated with the fuzzy input which is
derived by the understanding of the system behaviour. This is
done by the inference engine which applies rules from the rules
base Table 1. It is noted that the rules base table requires user
knowledge to form fuzzy rules and it can be expressed in the form
of IF-THEN [29]. Mamdani's inference engine method is commonly
used [69] which uses min–max operation in fuzzy operation. In
Ref. [66], the diagonal zero line in the rule base table represents
the switching line of acceleration and deceleration. Acceleration
and deceleration represents environmental changes, either rapid
changes or slow changes that affect the system.

In the defuzzification stage, the FLC output controller is con-
verted back to numerical variables from linguistic variables by
using the same membership function but with different ranges
depending on user defined. The output of the FLC will provide a
signal to control the duty-cycle of power converter in order to
track the maximum output. As the defuzzification result, the
output of the FLC will be able to maintain the operating voltage
of the PV array to its maximum value under partial shading
condition. Hence, energy conversion efficiency of the system can
be improved.

Literature [88] has embedded fuzzy logic to the P&O technique
to vary the size of perturbed voltage, ΔV, so that the true MPP can
be tracked and reached faster. Based on the research, when the PV
array experienced 50% of shading, the operating voltage is able to
shift to the point where power is optimum compare to the
conventional P&O which traps at any local peaks.

4.4.3. Artificial neural network
The application of artificial neural network (ANN) in various

fields has been increasing as it gives an advantage of performing
on non-linear tasks. It is based on learning process and does not
have to be reprogrammed. ANN consists of three layers; input
layers, hidden layers and output layer. ANN is modelled as
weights, which interconnect between neural networks and have
their own strength. As shown in Fig. 17, the interconnection
between i and j gives by wij. All inputs are summed together and
modify by the weights.

It is noted that, the artificial neural network is a system with
structure that receives an input, processes the data, and provides
an output. The number of nodes and the parameters of ANN can be
varied depending on designers. Input variables can be defined
from inputs of PV array such as temperature, rate of solar
irradiance and short-circuit current or open-circuit voltage. The
output of the ANN can be used to drive a power converter by
adjusting the duty-cycle signal or by having an input for another
controller so that the PV system operates at or near to the MPP.
The operation to gain accurate results depends on the algorithm
performance in the hidden layers and the training process of the
neural network [83].

In partially shaded condition, ANN is trained to predict the
global MPP voltage and power by observing the P–V curve under
several shading condition on the PV array [66]. Then, the differ-
ence between the prediction voltage and the actual voltage from
the PV array gives an error input for the MPPT controller to track
the maximum power.

Fig. 15. The block diagram of fuzzy logic controller.

Fig. 16. The membership functions of fuzzy logic controller.

Table 2
Rule base table of fuzzy logic controller.

ΔE E

NB NS Z PS PB

NB ZE ZE NB NB NB
NS ZE ZE NS NS NS
Z NS ZE ZE ZE PS
PS PS PS PS ZE ZE
PB PB PB PB ZE ZE

Fig. 17. The three layers of ANN structure [83].
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There are two topologies in the ANN connection, namely the
feed-forward neural networks as shown in Fig. 18 and the
recurrent neural networks as shown in Fig. 19. For feed-forward,
the input–output data is strictly feed-forward [89]. The data
processing can be extended to multiple layers with no feedback
connections. The connection is directly from inputs of units to the
outputs of units in the same layer or previous layers. By contrast,
recurrent neural network depends on the dynamical properties of
the network. The recurrent network contains feedback which
embodies short term memory. The activation values will experi-
ence a relaxation process, in which the activations will not change
when neural network turns to a stable state [90].

In order to enhance the MPPT for PV system under partial
shading condition, the authors from Ref. [66] had proposed ANN
combined fuzzy logic with polar information controller to find
maximum power. Three layers feed-forward of ANN is trained
under a number of partially shaded PV array to find the optimum
PV voltage. The developed method had been compared to the P&O
for several shading patterns in a certain period of time. The results
show that the tracking efficiency of the developed method is twice
higher than the P&O method.

4.4.4. Differential evolution
Differential evolution (DE) is an evolutionary algorithm that

was introduced by Storn and Price in 1996 [91]. The DE is a family
of Genetic Algorithm (GA) which is a stochastic based algorithm to
find for optimization. Thus, the operations of the DE are likely to
be the same as of the GA: initialization, mutation, crossover,
evaluation and selection. Like other algorithms, the DE also has
search variable vectors in a NP population.

4.4.5. Initialization
To start, the DE optimization is required to set the initial

parameters, population and maximum generation. The initial
vector is chosen randomly to cover the entire search space [91].
In order to obtain better search results, the parameter should lie
within a certain range. Initially, jth parameter is formed after
the DE algorithm is run. The parameter is initialized somewhere in
the decided range which has a lower and upper limit, xLj and xUj ,
respectively. Then, the jth parameter in ith population is

xi;jð0Þ ¼ xLj þrand ð0;1Þ: ðxUj �xLj Þ ð26Þ
rand (0, 1) is uniformly distributed random between 0 and 1.

4.4.6. Mutation
For each generation, individuals will become a target vector.

Due to the mutation operation, each individual will be mutated to
form a second individual called a mutant vector, V

!
iðtÞ. To create

V
!

iðtÞ for the ith population, three other parameter vectors,
r1; r2 and r3 are chosen randomly from the current population.
A scalar number F, scales the difference of any two of the three
vectors which will be added to the third one that is obtained from
the mutant vector V

!
iðtÞ. The process forms a new jth parameter in

the population and can be expressed as

vi;jðtþ1Þ ¼ xr1;jðtÞþF:ð xr2;jðtÞ�xr3;jðtÞÞ⋯ ð27Þ

4.4.7. Crossover
In crossover operation, the parent will expand for next gen-

eration. By mixing the target vector with a mutant vector in
crossover operation, third individual will produce a trial vector.
The DE has two different crossover schemes, namely the expo-
nential and the binomial schemes [92].

In exponential crossover, integer n is chosen randomly among
the numbers of [0, D�1] which become a starting point of the
target vector. Another integer, L is also chosen from interval of
[1, D] to represent number of components. Choosing n and L, trial
vector:

u!i;j ðtÞ ¼ ½ui;1 ðtÞ;ui;2ðtÞ;…;ui;DðtÞ ð28Þ
is formed with

ui;jðtÞ ¼ vi;j ðtÞ for j¼ nh iD; nþ1h iD;…; n�Lþ1h iD
¼ xi;j ðtÞ ð29Þ

for

j¼ nh iD; nþ1h iD;…; n�Lþ1h iD
¼ xi;jðtÞ ð30Þ
The angular bracket 〈 〉D denotes a modulo function with

modulus D. Then, (L4m)¼(CR)m�1 for any m40. The CR is the
crossover constant which control parameter of the DE.

In binomial crossover, the crossover is achieved on the D
variables whenever a randomly picked number between 0 and
1 is within the CR value. This scheme is given as

ui;jðtÞ ¼ vi; jðiÞ if randð0;1ÞoCR;
¼ xi; jðtÞ

else

4.4.8. Evaluation and selection
The population size is important to be kept constant over the

subsequent generations; hence a selection operator will take
action. In the selection operation, if the trial vector is able to find
the best fitness value compared to the parent target vector, the
trial vector will replace the parent for the next generation. Finding
the best individual in a local search, the competition is one to one,
while in the global search, it is necessary to find for the bestFig. 19. Recurrent neural network with four inputs and two outputs.

Fig. 18. Feed-forward neural network with four inputs and two outputs.
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individual among the population. The flow chart as shown in
Fig. 20 shows how the DE is conducted to find for optimum value.

The author [62] has introduced MPPT algorithm using DE for
partial shading conditions. Comparing DE and the most common
conventional MPPT algorithm, P&O, DE can converge very fast and
reach the MPP without any oscillation even under partial shading
conditions. Under rapidly changing environmental conditions, the DE
is able to track to MPP while the P&O cannot reach to the global MPP.

5. Genetic algorithm

Ramaprabha [63] has introduced a MPPT controller using
genetic algorithm (GA) for partial shading conditions. The princi-
ple of the GA is similar to the DE algorithm which is based on
genetic and evolution biological behaviour. In the GA, it contains
three basic operators which are the selection, crossover and
mutation. In a random population, selected individual is repre-
sented as a candidate solution to the optimization. The mechanism
of the GA in order to find optimization can be simplified as in
Fig. 21.

Based on Fig. 21, the GA parameters need to be identified. The
parameters are constituted by genes in a chromosome. These can
be either in the form of binary code or real code. Each of the
chromosomes will present different parameters which mean that
there is a possibility of variable solutions that can be obtained.
The objective function gives a performance index of the GA to
determine the performance of each chromosome. The objective
function is formed based on the performance requirement of each
problem such as convergence value and error.

Next, the initial population is generated by randomly picking a
set of chromosomes. The population size is depending on the
complexity of optimization problems. Fast convergence solutions
with only a few generations is required if the population size is
larger. However, a larger population size will take longer to track
as the computation time is depending on the number of used
generations. When the convergence value is satisfied, the opera-
tion will stop. Nevertheless, the operation will continue by apply-
ing genetic operations which are selection, crossover and mutation
in order to generate the next generation. This process will
continue until optimization is achieved.

In genetic operations, the algorithm is to be ensured that it will
not stop searching at local maximum but the process will continue
until the algorithm tracks the true global peak. In Ref. [87], a
genetic algorithm is used to optimize the fuzzy logic controller for
the maximum power point tracking under varying atmospheric
conditions. By applying the GA, the FLC parameters such as rules
base and membership function can be tuned to optimal value
where the highest fitness in the last generation will determine the
shape of membership function as well as rule base table. Thus, this
will improve the performance of the FLC in the optimization
process.

6. Discussions

There are many MPPT techniques that can be found from
literature reviews. Techniques can range from conventional tech-
niques to recent developed techniques which share the same aim

Fig. 20. The flow chart of differential evolution MPPT algorithm.

Fig. 21. The flow chart of genetic MPPT algorithm.
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in order to maximize the PV output power regardless of uniform
irradiance or partial shading. The MPPT techniques can be cate-
gorized based on their characteristics. In this paper, the discussion
is made into the following factors, namely the design complexity,
ability to track the true MPP, cost consideration, sensitivity to the
environmental change and also the convergence speed.

6.1. Design complexity

It is important to choose the most suitable MPPT based on its
design complexity. The efficiency and complexity of MPPT depend
on how accurate the algorithm has predicted by calculation, in
searching for the true MPP or the local peaks. Otherwise, the
optimum solar energy isn't harvested by the PV system. On the
other hand, the implementation of the MPPT depends also on the
user knowledge in handling the MPPT, in which, one may be good
in dealing with analog circuits while others prefer digital circuits.
Nevertheless, most of the stochastic based MPPT algorithms are
implemented in digital form which requires software and compu-
ter programming.

6.2. Ability to track the true MPP

As the solar irradiance is unpredictable, there is a tendency that
partial shading could occur. This condition would lead to the
formation of multiple peaks on the P–V characteristic, which
directly affects the tracking efficiency of the PV system. Conven-
tional MPPT algorithms are not capable in tracking the true MPP
while stochastic based MPPT algorithms are equipped with the
capability to track the global peak over multiple local peaks. In this
context, the PSO and the DE algorithms have the highest capability
while the ANN and the FLC requires an additional driver to drive
the controller to extract the maximum power from the system.

6.3. Cost consideration

In some applications especially commercialization, cost is the
main factor to be considered. The cost of MPPT depends on the
number of sensors implemented in the system, the complexity of
the design as well as the choice of analog or digital system. The
number and type of sensors implemented influence the system
cost because in most cases, current sensors are much more pricy
than voltage sensors. The types of hardware used to control the
MPPT algorithm also affect the implementation cost while the
choice of algorithm used determines the system capital cost.
Besides that, analog circuits are lower in cost than digital circuits
which require computer programming.

6.4. Sensitivity

A good MPPT algorithm must be sensitive enough to any
atmospheric condition changes. The MPPT algorithm must be able
to respond quickly and track the maximum power point of the

particular PV system at the given condition, be it uniform solar
irradiance or partially shaded condition. The PSO and the DE are
among the MPPT algorithms that are able to automatically update
the optimum power of the PV system when there is a change in
solar irradiance and ambient temperature.

6.5. Convergence speed

A high sensitivity MPPT algorithm should be able to converge
to the required operating voltage and current at a very high speed,
regardless of a gradual or drastic change of environmental condi-
tions. Comparatively, the conventional MPPT techniques takes a
longer time to converge to the true MPP as compared to the
stochastic techniques. In addition, the stochastic algorithms per-
form tracking at minimal or negligible oscillation. In short, in
designing a PV system, one should take into the consideration the
MPPT algorithm convergence speed as well as the tracking
performance to avoid any loss of energy.

The abovementioned PV MPPT algorithms are summarized in
both Tables 3 and 4, respectively.

7. Conclusion

This paper has comparatively reviewed the available MPPT
algorithms for PV systems, ranging from the conventional techni-
ques to the most recent developed stochastic based algorithms.
The control strategy to extract the maximum power from PV array
varies from one MPPT algorithm to another. The design criteria of
MPPT algorithms can be categorized into the design complexity,
ability to track the true MPP, cost consideration, sensitivity to the
environmental change, the convergence speed and the efficiency
of the controller to operate at the prevailing atmospheric condi-
tion. Based on the literature review, it can be concluded that the
conventional MPPT algorithms work fine under uniform solar
irradiance. However, these algorithms fail to drive the PV system
operating point to the true MPP under rapidly changing atmo-
spheric and partial shading conditions. This issue was overcome by
using the new MPPT techniques based on stochastic and artificial
intelligence, which showed good performance in tracking global
peak. Moreover, the tracking process is faster and able to reach the
true MPP or the global peak without oscillation. Today, research on
MPPT algorithms is ongoing with the ultimate aim to find a simple,
low cost and highly efficient algorithm. Almost all renewable
energy comes with non-linear characteristic by nature; hence
the MPPT controller is essential to ensure the system is operating
at the optimum condition and to make best use of the expensive
technology. Therefore, it is hoped that in the near future, the
dependency on conventional fossil fuel resources can be further
reduced when the output power from renewable resources can be
fully harvested and utilized.

Table 3
The characteristics of conventional MPPT techniques [83].

Criteria P&O HC IncCond Voc Isc RCC

PV array dependant No No Yes Yes Yes No
Convergence Speed Varies Varies Varies Medium Medium Fast
Periodic tuning No No No Yes Yes No
Sensed parameters Voltage, current Voltage, current Voltage, current Voltage Current Voltage, current
Complexity Low Low Medium Low Medium Low
Analog/digital Both Both Digital Both Both Analog
Ability to track true maxima Yes Yes Yes No No Yes
Sensitivity Moderate Moderate Moderate Low Low Moderate
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