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Accurate electricity price forecasting is a formidable challenge for market participants and managers
owing to high volatility of the electricity prices. Price forecasting is also the most important management
goal for market participants since it forms the basis of maximizing profits. This study investigates the
performance of a novel neural network technique called Extreme Learning Machine (ELM) in the price
forecasting problem. Keeping in view the risk associated with electricity markets with highly volatile
prices, relying on a single technique is not so profitable. Therefore ELM has been coupled with the Wave-
let technique to develop a hybrid model termed as WELM (wavelet based ELM) to improve the forecast-
ing accuracy as well as reliability. In this way, the unique features of each tool are combined to capture
different patterns in the data. The robustness of the model is further enhanced using the ensembling
technique. Performances of the proposed models are evaluated by using data from Ontario, PJM, New
York and Italian Electricity markets. The experimental results demonstrate that the proposed method
is one of the most suitable price forecasting techniques.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Deregulation of electricity sector has led to the development of
a competitive market structure where the participants compete for
the market share through spot and bilateral markets. Electricity
prices in such markets are directly or indirectly driven by a number
of factors which are interlinked to each other in a complex fashion.
Uncertainty in factors such as weather, equipment outages, fuel
prices, and transmission bottlenecks result in extreme price vola-
tility or even price spikes of electricity market. The complex, uncer-
tain movement of electricity prices over different hours of the day
is of great interest to the market participants. The market partici-
pants need reliable forecasted prices for either bidding or hedging
against price volatility in the market. Driven by the importance of
the future prices and the complexities involved in determining
them, detailed modeling and forecasting of electricity prices has
become a major research field in electrical engineering.

A significant number of research papers have addressed the
problem of accurate price forecasting through different ap-
proaches. The most commonly observed one’s are the time series
based [1–4] and the artificial intelligence based approaches [5–8]
which are basically regression models as they relate electricity
prices variations to historical prices and other explanatory vari-
ables such as demand, fuel prices, temperature, time of day etc.
Some of the recent works which have addressed the problem of
accurate electricity price forecasting are presented in [9–12]. In [9],
the authors have based their research on the Grey system theory
[GST] which considers uncertain systems which are partially known
and have small samples. They proposed a new grey model in which
the reference series is determined using the correlation method and
the model parameters are identified using Particle Swarm Optimi-
zation (PSO) instead of Least Square method (LSM). A hybrid model
comprising of Wavelet transforms (WT), Auto Regressive Integrated
Moving Average (ARIMA) and Radial Basis Function Neural Network
(RBFN) was proposed in [10]. Further, the network structure of RBFN
used in this methodology is optimized using the PSO technique and
the method works well even for lesser input data. Authors in [11]
also combined well know techniques such as wavelet transforms,
PSO and Adaptive-network-based fuzzy inference system (ANFIS)
to develop a hybrid methodology. Wavelet transform is used ini-
tially for decomposing the non-linear price signal into independent,
smooth signals which are later on recombined to form the individ-
ual signals. The prediction is done by the ANFIS module and the
parameters of the network structure are optimized using PSO. In
[12], a RBF-NN-GARCH model was proposed where the traditional
RBF-NN model is extended by using GARCH specifications for mod-
eling the variability of price signals. The model parameters are
tuned using a maximum likelihood function which is further opti-
mized using a derivative free genetic algorithm.

Many of the available papers including the ones discussed above
have proposed hybrid methodologies and have some kind of network
structure which needs to be tuned using optimization techniques
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Nomenclature

Am Approximate series at resolution m
Dm detail series at resolution m
E number of ensembles
g (x) activation function
H hidden layer output matrix
H� Moore Pensrose generalized inverse of H
L (�) wavelet function
N data samples

N
�

number of hidden nodes
Pt actual price value at hour tcPt forecast price at hour t
T target matrix
W input weight matrix
b output weight matrix
u father wavelet function
w mother wavelet function
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requiring additional computational effort. Neural network based
structures are most commonly employed and the efficiency of NN
based methods is highly dependent on appropriate tuning of their
adjustable parameters, e.g., the number of hidden layers, nodes,
weights and transfer function etc. Most ANN based forecasting meth-
ods use gradient-based learning algorithms, such as the back propa-
gation neural network (BPNN), and are plagued with problems such
as over-tuning and long computation time. Recently, a novel learning
algorithm for single-hidden-layer feedforward neural networks
(SLFN) called extreme learning machine (ELM) has been proposed
in [13,14]. In the proposed algorithm, the input weights and hidden
biases are randomly chosen, and the output weights are determined
analytically by using the Moore–Penrose (MP) generalized inverse.
ELM surpasses the traditional gradient-based learning methods in
terms of faster learning speed with a higher generalization and it also
avoids many difficulties faced by gradient-based learning methods
such as stopping criteria, learning rate, learning epochs, local min-
ima, and the over-tuning problems [15–17].

Up to now, the ELM has been successfully applied in various
areas such as classification [18], terrain reconstruction [19] and
protein structure prediction [20] etc. The ELM technique has been
applied for the case of electricity price forecasting in [21] where
the advantages of ELM over traditional NN structures were high-
lighted and also the uncertainties related to prediction were quan-
tified using the bootstrapping technique. In this paper the ELM, in
conjunction with other techniques, is selected to forecast Day
Ahead electricity prices for some of the existing markets. When
making a decision, participants usually consider results from many
types of techniques that help them to achieve their objective. Rely-
ing on a single technique can be very risky particularly in case of
power markets where volatility is very high and millions of dollars
are at stake. Combining several techniques together to form a hy-
brid tool has become a common practice to improve the forecast-
ing accuracy where each models unique feature are combined to
capture different patterns in the data. Theoretical as well as empir-
ical findings suggest that hybrid methods can be effective and effi-
cient in improving forecasts. Therefore ELM method has been
coupled with the Wavelet techniques to develop a hybrid model
termed as WELM (wavelet based ELM) and it is shown to give fas-
ter and more accurate results. The robustness of the model is fur-
ther enhanced using the ensembling technique. The rest of the
paper is organized as follows. The fundamental principles of the
proposed method are introduced in Section 2. The various steps
of model development are discussed in Section 2. Case studies
and experimental results are presented in Sections 4 followed by
the conclusion of the work in Section 5.
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Fig. 1. Price profile of Ontario electricity market for the year 2004.
2. Methodology

In this section, we present the methodology employed for elec-
tricity price forecasting using a model consisting of ELM and data
is preprocessed using a wavelet decomposition technique. Electric-
ity price signal is highly volatile, corrupted by occasional spikes and
follows a weekly-daily cycle with each sample of one hour interval.
Fig. 1 shows the price profile of the Ontario electricity market for the
year 2004 which testifies the above statement. A price signal exhib-
its much richer structure than the load series and signal processing
techniques like Fourier Transform (FT), Wavelet Transform (WT) are
good tools to bring out the hidden patterns in the prices. WT is used
for multi-scale analysis of the signal and decomposes the time series
signal into the low-frequency sub-series (approximation part) and
some high-frequency sub-series (detailed part) in the wavelet do-
main. These constitutive series have better statistical properties
than original price series and hence better forecasting accuracy
can be achieved by their appropriate utilization. In WT based
models, first of all WT is applied to the price series, prediction is
made in the wavelet domain using a ELM model and then inverse
WT is applied to obtain the actual predicted value in time domain.
A brief introduction to the ELM, wavelet technique, and other as-
pects relevant to the proposed methodology is presented in this
section.
2.1. Extreme learning machines

The theoretical foundation behind the Extreme learning ma-
chine (ELM) architecture is explained in this section. ELM is an im-
proved learning algorithm for the single feed-forward neural
network architecture. ELM is different from the traditional neural
network methodology in the sense that all the parameters of the
feed-forward networks (input weights and hidden layer biases)
are not required to be tuned in its case. The capability of SLFNs
with randomly chosen input weights, hidden layer biases and a
nonzero activation function to approximate any continuous func-
tions on any input set has been demonstrated in [17]. The SLFN
with randomly chosen input weights and the hidden layer biases
can be considered as a linear system. For this linear system, the
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output weights which link the hidden layer to the output layer can
be analytically determined through simple generalized inverse
operation of the hidden layer output matrices. This simple ap-
proach makes ELM very efficient and many times faster that than
the traditional feedforward learning algorithms.

The structure of ELM consists of a single hidden-layer
feedforward neural network (SLFN) in which the input weight
matrix W is randomly chosen and the output weight matrix
b is analytically determined. Suppose we are given a data set
with N arbitrary distinct samples (xi, ti) where xi = [xi1, xi2, . . . ,
xin]T 2 Rn and ti = [ti1, ti2, . . . , tim]T 2 Rm. The mathematical model
of a standard SLFN with eN hidden nodes and activation function
g(x) for the given data can be formulated as [13]:

XeN
i¼1

bigiðxjÞ ¼
XeN
i¼1

bigiðwixj þ biÞ ¼ yj; j ¼ 1; . . . ;N ð1Þ

where wi = [wi1, wi2, . . . , win]T denotes the weight vector which
connects the input nodes to the ith hidden node and bi = [bi1,
bi2, . . . , bim]T is the weight vector which connects the output
nodes with the ith hidden node. Also, bi is the threshold of
the ith hidden node. The inner product of wi and xj is denoted by
the operation wi � xj in (1). Let us consider that the standard
SLFNs with eN hidden nodes with activation function g(x) can
approximate these N samples with zero error. In such a situation,
we have

XN

j¼1

kyj � tjk ¼ 0 ð2Þ

where y denotes the actual output value of the SLFN. This indicates
the existence of bi, wi, and bi such that

XeN
i¼1

bigiðwixj þ biÞ ¼ tj; j ¼ 1; . . . ;N ð3Þ

A succinct expression of the above N equations can be written
as

Hb ¼ T ð4Þ

where H is the hidden layer output matrix.

H ¼
hðx1Þ
. . .

hðxNÞ

2
64

3
75 ¼

h1ðx1Þ . . . heN ðx1Þ
. . . . . . . . .

h1ðxNÞ . . . heN ðxNÞ

2
64

3
75 ð5Þ

b ¼

bT
1

. . .

. . .

bTeN

2
66664

3
77775 ð6Þ

T ¼

tT
1

. . .

. . .

tT
N

2
6664

3
7775 ð7Þ

As discussed earlier, the input weights and hidden biases are
randomly generated and do not require any tuning as in the case
of traditional SLFN methodology. The evaluation of the output
weights linking the hidden layer to the output layer is equivalent
to determining the least-square solution to the given linear system.
The minimum norm least-square (LS) solution to the linear system
(4) is

bb ¼ HyT ð8Þ
The H� in the above equation is the is the Moore–Penrose (MP)
generalized inverse of matrix H [22]. The minimum norm LS solu-
tion is unique and has the smallest norm among all the LS solu-
tions. The MP inverse method based ELM is shown to obtain a
good generalization performance with a radically increased learn-
ing speed. A general Algorithm for ELM can be stated as follows.
For a given a training set, activation function g(x), and hidden neu-
ron number L:

Step 1: Assign random input weight wi and bias bi, i = 1, . . . , L.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight b: b = H�T

2.2. Wavelet transforms

Wavelet transform is an important tool used for analyzing the
frequency components of signals and it has overcome the limita-
tions of Fourier and Short-time Fourier transform. It has excep-
tional capacity to extract the relevant time–frequency
information from non-periodic and transient signals. Wavelets
functions disintegrate the data into different frequency compo-
nents, and then study each component with a resolution matched
to its scale [23]. The wavelet technique has made its way into a
number of different fields such as image compression [24], fault
classification [25], and hydrological prediction [26].

While implementing the wavelet transform technique, a limited
number of positions and resolution levels (discrete wavelet trans-
form) are considered. In this work, the wavelet transform is used to
decompose the electricity price series into a set of better-behaved
constitutive series. Predictions for the constitutive series are sepa-
rately made and reverse wavelet transform is performed to gener-
ate actual predicted prices. The decomposition coefficients of the
wavelet transform of the hourly price series determined by tech-
nique are given by [27]

pL
mn ¼ 2�

m
2ð Þ
XT�1

t¼0

ptL
t � n � 2m

2m

� �

¼ 2�
m
2ð Þ
XT�1

t¼0

ptLmnðtÞ ð9Þ

where L(�) is the selected wavelet function, pt is the value of the
price at hour t, T is the length of the series, pL

mn is the decomposition
coefficient corresponding to resolution level m and position n. The
number of coefficients at each resolution level is given by T/2m pro-
vided the number of observations, T, is divisible by 2m. Faster calcu-
lations can be made by treating expression (9) as a convolution, and
using the efficient Fast Fourier Transform [28].

An effective way to apply the wavelet functions is the multi-res-
olution technique based on using a father wavelet function and its
complementary, a mother wavelet function. The father function
provides for extracting the low frequency components, while the
mother function allows extracting the high frequency components
of the series. Orthogonal wavelet functions are preferably chosen
because of their appropriate mathematical properties. Hence, the
‘‘approximation series’’, Am(m = 1, . . . , M), and the ‘‘detail series’’,
Dm(m = 1, . . . , M), are defined as

Am ¼
X

n

pU
mnumnðtÞ; m ¼ 1; . . . ;M ð10Þ

and

Dm ¼
X

n

pW
mnwmnðtÞ; m ¼ 1; . . . ;M ð11Þ

where umn(t) and wmn(t) are the father and mother wavelet func-
tions, and pU

mn and pW
mn are the coefficients obtained through (9).

The father wavelet function u(t) is one solution of a functional
equation
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uðtÞ ¼
X1

k¼�1
ak

ffiffiffi
2
p

uð2t � kÞ ð12Þ

and the mother wavelet function w(t) is given by

wðtÞ ¼
X1

k¼�1
ð�1Þka�kþ1

ffiffiffi
2
p

uð2t � kÞ ð13Þ

Further details of the above functions can be obtained from
[29]. The expression of the original price series pt(t = 1, . . . , T) can
now be reconstructed by

pt ¼ D1 þ � � � þ DM þ AM ð14Þ

which is the denominated multi-resolution decomposition of the
price series.

Daubechies wavelets are most appropriate for treating a non-
stationary series and have been considered in this work also.
2.3. Ensemble based decision making

Ensemble methods are sometimes employed in statistics and
machine learning where multiple models are developed to obtain
better predictive performance than could be obtained from indi-
vidual models. They have been shown to produce better results
compared to those of single-expert systems for a large number of
applications [30]. Ensemble methods focus on modifying the train-
ing process with the intention that the resulting model will give
different predictions. Methods based on neural network tech-
niques bring about such modifications in the training process by
means of different topologies, parameters, initial weights or by
training only a portion of the training set [31]. Bagging and boost-
ing are some of the popular ensembling methods. Opitz and Maclin
[31] investigated the creation of a simple neural network ensemble
where each network used the full training set and differed only in
its random initial weight setting. The methodology was found to be
very effective and at par with the Bagging method. Similar findings
were presented by Ali and Pazzani [32] using randomized decision
tree algorithms. An important aspect of the ensemble methods is
the selection of appropriate combinational strategy for the integra-
tion of individual models. The commonly used strategies are arith-
metic averaging, weighted averaging, voting, etc. The advantage of
arithmetic averaging technique is its simplicity and has also been
shown to give better results [33]. Therefore we have adopted this
strategy in our work also. Extreme Learning Machines have been
shown to have many advantages compared to other learning tech-
niques but its application in important decision making problems
can be limited due to its fluctuating output caused by random ini-
tializations of weights and biases. Every time the model is run, its
output will be slightly different from the previous one. However, it
should be mentioned that the fluctuations observed in ELM output
is quite lower compared to that of ANN because of higher general-
ization capacity. In order to make the predictions of the proposed
model more robust and consistent, the simple network ensemble
technique is applied here. An ensemble of different WELM models
based on different weight initializations is created and the arith-
metic average of the ensemble member’s prediction is used as fi-
nally predicted output.

�yi ¼
1
E

XE

j¼1

yj
i ð15Þ

where E refers to the number of Ensembles taken into consider-
ation, yj

i is the output of the ith hour from the jth ensemble and �yi

is the final aggregate output.
2.4. Forecast error measures

To assess the prediction performance of the models, different
statistical measures can be utilized [34]. The most widely used
measures are those based on absolute errors, i.e. absolute values
of differences between the actual price, P, and predicted price, bP
for a given hour t. The Mean Absolute Error (MAE) is a typical
example. For hourly prices it is given by:

MAE ¼ 1
N

XN

t¼1

Pt � P̂t

��� ��� ð16Þ

where N is the number of hour for forecasting. MAE is quite a sen-
sible index when evaluating model performances for a single time
series. However its usage for comparing across different datasets
for different forecasting horizons could be quite misleading as the
index is scale dependent [35,36]. The relative or percentage differ-
ence, which is a scale independent, is sometimes more informative
than the absolute errors particularly when comparing results for
two distinct data sets. In such cases the Mean Absolute Percentage
Error (MAPE) is a better choice. For hourly prices the daily MAPE
takes the form:

MAPE ¼ 1
N

XN

t¼1

Pt � P̂t

��� ���
Pt

ð17Þ

MAPE is known to have the disadvantage that it may be infinite or
undefined for Pt = 0. Excessively large values can also pose a prob-
lem by reducing the index to a very small value [37]. They also tend
to put a heavier penalty on positive errors than on negative errors.
Some alternative performance measures have also been suggested
in the literature for price forecasting due to the unique characteris-
tics of electricity prices. For instance, the absolute error Pt � P̂t

��� ��� can
be normalized by the average price attained during the day [38].
The resulting measure, commonly known as the Mean Daily Error,
is given by:

MDE ¼ 1
24

X24

t¼1

Pt � P̂t

��� ���
�Pt

ð18Þ

where

�Pt ¼
1

24

X24

t¼1

Pt ð19Þ

In this case, MDE compared to MAPE gives more emphasis to er-
rors in the high-price range. Analogous to MDE, the Mean Weekly
Error can be computed for N = 168.

The median price can also be used for normalization. Since
median is more robust to outliers (or spikes), the resulting mea-
sures – Median Daily Error (MeDE) and Median Weekly Error
(MeWE) – in some cases exhibit better performance. Apart from
absolute value-type norms, square-type norms like Daily Root
Mean Square Error (DRMSE) and the Weekly Root Mean Square Er-
ror (WRMSE) are also very popular.

WRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
168

X168

t¼1
jPt � bPt

r
j2 ð20Þ

RMSE has been a popular measure historically because it is on
the same scale as the data and is quite relevant in statistical mod-
eling. However, researchers have warned against its use as it is
more sensitive to outliers than MAE and others [39]. In this work,
the above mentioned five type of error indices have been taken
into consideration.
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3. Model development

The proposed methodology is tested for the short term price
forecast of the Ontario, PJM, New York and Italian Electricity mar-
kets and compared with the recently published works. Data of On-
tario electricity market has been obtained from their website [40].
To illustrate the behavior of the proposed technique and for the
sake of fair comparison with other works, results comprising six
weeks corresponding to the three prominent seasons of year
2004 are presented. The first test period is from April 26 to May
9, 2004 which represents spring’s low demand period. The second
test period from July 26 to August 8, 2004 corresponds to summer
peak-demand period. Winter high-demand period, from December
13–26, 2004, has been selected as third test period. The same mod-
el has been tested for the PJM Market data to verify its robustness
and efficacy. Four test weeks corresponding to different seasons of
the year 2004 have been taken into consideration similar to other
works for a fair comparison. The test dates are February 23–Febru-
ary 29, May 17–May 23, August 23–August 29 and November 22–
November 28 corresponding to Winter, Spring, Summer and Au-
tumn seasons. Data of PJM market has been obtained from website
[41]. Similarly, the model has been tested for a selected period of
the Italian and New York Electricity Market data series as consid-
ered in other works and the data has been obtained from the mar-
ket’s official website [42,43].

The various components of the model are depicted graphically
in the flowchart presented in Fig. 2 for better understanding and
explained further in this section. After collecting the relevant data,
the first step is to select a suitable training duration for the model.
The training data enables the model to develop a generalized net-
work structure using which it can estimate the unknown data
accurately. In order to create the training and testing data sets, it
is essential to decide which input variables should be taken into
consideration. Electricity prices are influenced by a number of fac-
tors such as historical load, system load rate, imports/exports,
weather, fuel prices, generation outages, bidding strategies, de-
mand elasticity, and holidays. However, inclusion of all these fac-
tors in a prediction model can complicate the process as a
separate module of relevant feature selection is necessary to deter-
mine and include the most relevant input features. Also the redun-
dancy in the input features can degrade the model performance
rather than improving it [44]. For example, in [45] it was observed
that inclusion of load demand slightly degrades the performance of
the model for Spain market. In order to keep the methodology sim-
ple and for comparison purposes, we have considered historical
prices as the only input variable as considered in most of the re-
ferred publications. A detailed feature selection technique consid-
ering other factors would be considered in our future work. In this
work a dynamic feature selection strategy has been employed to
capture the movement of electricity prices in different scenarios.
Selection of input features is based on their high correlation with
the price at the current hour. The dynamics of electricity prices is
different for all the markets thereby leading to different kinds of
trends and seasonality. These differences can be captured by the
autocorrelation factors. Keeping in view this fact, a fixed set of in-
put features will not be applicable for all the markets and corre-
sponding seasons. After performing the correlation analysis for
different lag periods, those periods which have high correlation
values are separated out and a fraction of them are finally selected
as the input features. Next step is to decompose the price times
series into different component series. In this work, Daubechies
wavelets (dB4) have been considered and different case studies
are performed. The Wavelet transform decomposes the original
prices series into a approximation series and a detailed series.
Approximation series correspond to low frequency bands and rep-
resent the trend of the price signal whereas the detailed series cor-
respond to high frequency bands and contain the local short-period
discrepancies in the price signal due to bidding strategies adopted
by the participants as well as other known and unknown factors.

The approximate and the detailed series is now processed to
form training and testing data sets. Using the selected input fea-
tures, training and testing data sets are created and they are
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further processed to get normalized data sets using the normaliz-
ing technique. The normalized data sets corresponding to both
the approximate and the detailed series are separately given to
ELM model for prediction. The resultant predicted values corre-
sponding to the approximate and detailed sets are first unnormal-
ized and then added to give the final predicted value of the future
prices. The steps confined in the box labeled as Ensemble block is
repeated for different ensembles and the aggregate of all the model
outcomes is deemed to be the final predicted output for practical
considerations. Ensemble based decision making requires addi-
tional computational time owing to the result of more than one
model being taken into consideration. The number of models that
should be taken into consideration depends on the sensitivity of
the problem and time considerations. Based on their research, Han-
son and Salamon [46] recommended that the number of ensemble
members required to reduce the test set error adequately could be
as few as ten. Alternate suggestions have also been made by
researchers, however we have considered the ensemble member
number to be ten for computational efficiency and time consider-
ations. The forecasting horizon of the proposed methodology is
24 h therefore we have employed the recursive forecasting meth-
odology in this work. Once the price of an hour is forecasted, it is
given as an input to the model to predict for the next consecutive
hour while the initial value of the historical price series is elimi-
nated. The model acts like a moving window and the process is re-
peated till the prices for all the 24 h of the day are predicted.
4. Case studies and results

With the above developed model in hand, a number of case
studies are performed and performance of the model under differ-
ent conditions is investigated. The major advantage of ELM over
traditional neural network models is that the parameters do not re-
quire any tuning in the former case thus eliminating the need for
repetitive tuning and cross validation to come up with the best
model. The learning capacity of ELM is very fast and it gives excel-
lent performance when the training data set is shown even once to
the network. For each forecast day, we considered a historical data
of seven weeks as taken in [47], where 49 days were considered for
training, one day for validation and one testing day. However, in
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Fig. 3. ACF plots for Ontario an
this work, the requirement of a separate validation set is
eliminated because the ELM model does not require any iterative
tuning based on validation set. The trained model was directly val-
idated using the testing data. The input features for the forecasting
model are determined using the autocorrelation analysis for each
forecasting period as explained in Section 3. The autocorrelation
function curves corresponding to the Ontario and PJM Day-ahead
market electricity prices for summer and winter seasons are de-
picted in Fig. 3. From the figure, we can observe that different rela-
tion between the past and present prices exist in both the markets.
The daily and weekly seasonality is more prominent in the PJM
Day-Ahead market and comparatively less significant seasonality
is observed for the case of the Ontario market. Such variations
are not only seen across different markets, but they can also be ob-
served across different seasons of the year corresponding to the
same market. The selected features using this method are depicted
in Table 1. The number of input features required for appropriate
generalization from the training data is also case dependent and
it is shown in the Table.

The price series was decomposed till one level into approximate
and detailed series and corresponding training and testing data
sets were created. Corresponding data sets were fed to the ELM
model and prices were predicted for a duration of week. In the first
case study, a basic ELM network was tuned with a simple data
without any decomposition and with different activation function
to determine the most suitable activation function for the given
data. The performance with sigmoid, sinusoidal and hardlim func-
tion was evaluated for the first test week of the spring season.
Fig. 4 shows the performance comparison and it was observed that
hardlim function gives a poor performance in comparison to sig-
moid and sin. The performance of sigmoid function was still on
the better side and is used as a default activation function in all
the further analysis. Now a detailed experiment is performed with
decomposed price series for all the test weeks.

A unique feature of ELM is that their generalization perfor-
mance is independent of the number of hidden nodes if the num-
ber of hidden nodes is considerably large [13]. This fact is also
verified by testing the model against different number of hidden
nodes varying from 5 to 100 and also different number of training
periods varying from 7 to 70. The testing period is one week i.e.,
168 h of a week.The performance variation is depicted in three
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Table 1
Selected features using ACF.

Test week Input features, Pt�x

ONTARIO
26 April–2 May x = 1, 2, 3, 22, 23, 24, 25, 26, 47, 48, 49, 72, 96, 143, 144, 145, 167, 168, 169, 192
3–9 May x = 1, 2, 3, 22, 23, 24, 25, 26, 47, 48, 49, 72, 143, 144, 145, 167, 168, 169, 192, 336
26 July–1 August x = 1, 2, 3, 4, 21, 22, 23, 24, 25, 26, 27, 47, 48, 49, 144, 167, 168, 169, 192, 193
2–8 August x = 1, 2, 3, 4, 21, 22, 23, 24, 25, 26, 27, 47, 48, 84, 85, 144, 167, 168, 169, 192
13–19 December x = 1, 2, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 144, 168, 169, 192, 216, 336.
20–26 December x = 1, 2, 3, 23, 24, 25, 48, 71, 72, 73, 95, 96, 97, 120, 144, 145, 168, 169, 336, 337

PJM day-ahead
Winter x = 1, 2, 11, 12, 12, 23, 24, 25, 48, 72
Spring x = 1, 2, 23, 24, 25, 48, 49, 72, 96
Summer x = 1, 2, 22, 23, 24, 25, 26, 47, 48, 168
Autumn x = 1, 23, 24, 25, 168
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Fig. 4. Performance comparison with different activation functions.
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dimensional Fig. 5. The MAPE values are comparatively higher for
very low training periods and less number of hidden nodes which
Table 2
Weekly MAPE for HOEP forecast in the Ontario electricity market.

Test week Arima TF DR

26 April–2 May 15.9 15.6 15.9
3–9 May 18.6 18 18.1
26 July–1 August 13.6 12.3 13
2–8 August 21.5 18.3 19
13–19 December 15.4 14.8 14.7
20–26 December 20.8 17.5 18.5

Average 17.6 16.1 16.5
can be seen in the form of peaks at the ends. The major portion of
the Fig. 5 is flat which shows that the model performs equally well
for different combinations of training periods (data) and hidden
nodes if they have high values.

Once the activation function, the number of hidden nodes and
the training period duration is fixed for the ELM model as ex-
plained above, training and testing data sets corresponding to dif-
ferent markets are given to the model and next hour prices are
predicted. Once the entire forecasted price profile is obtained from
the model, different forecast error measures given in Section 2.4
are evaluated. The MAPE values for Ontario Market data are com-
pared with other techniques such as ARIMA, transfer function
(TF) and Dynamic Regression (DR) [48] and modified relief and hy-
brid neural network technique (MR + HNN) [47] and the numerical
results are enlisted in Table 2. The forecasting accuracy of the
WELM model is seen to be better than the results of previous
works and it is further improved with the ensembling technique
at a slightly higher computational cost. A performance improve-
ment of 20.1%, 21.1%, 59.9%, 41.7%, 26.8% respectively is obtained
for the first five test weeks in comparison to the best results quoted
from previous works. The performance was lower only for the last
week by a margin of 2.5%. Ensembling technique is shown to fur-
ther enhance the prediction performance over a single model run
and its results can be considered to be more reliable. From the
MAPE values enlisted in the table, we can observe a cyclical pattern
in the MAPE index obtained for different seasons. The lowest MAPE
index is obtained for the summer peak demand period and highest
for the winter peak demand period and intermediate MAPE indices
are obtained for the spring low demand period for the proposed
method. Higher error levels can be generally attributed to higher
uncertainty in the data particulary in the winter season which is
more severe compared to other seasons in this region. However,
the ensembling technique used in this work, where models with
different network weights are used, ensures that the results are
more reliable compared to single models. The general range of
MAPE’s obtained in this region is around 3–9% for the considered
periods of study. The forecasted price profile of the proposed
MR + HNN WELM WELM with ensembles

9.46 9.22 7.56
9.72 8.88 7.67
9 4.68 3.61
9.04 6.56 5.27
9.36 7.63 6.85
8.8 10.3 9.02

9.23 7.88 6.66
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Table 3
Weekly MAPE for PJM market.

Test week AWNN WELM WELM + ensembles

Winter 6.362 6.108 6.010
Spring 5.976 5.128 4.937
Summer 5.954 5.872 5.843
Autumn 6.648 6.428 6.056

Average 6.235 5.884 5.712
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Fig. 9. Actual and forecast prices for 23–29 August: PJM.
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method for the Ontario Market for all the test weeks is graphically
shown in Figs. 6–8.

The performance of the proposed model for PJM market is also
evaluated and the results are depicted in Table 3. The results ob-
tained with the proposed methodology is compared with a adap-
tive wavelet neural network (AWNN) based technique presented
in [45] and better results are obtained for all the test weeks with
WELM as well as WELM with ensembling technique. The fore-
casted price profile of the proposed method for PJM Day-Ahead
market for one test weeks is graphically shown in Fig. 9. The range
of errors for PJM market for the four seasons is around 4–6% which
is comparatively more compact compared to that of Ontario Mar-
ket. This discrepancy is quite reasonable due to high volatility of
the Ontario Market compared to PJM-Day Ahead Market. The mod-
el was also tested for the price data corresponding to months May-
2004 to March-2005 of the Italian Electricity Market and the re-
sults are presented in Table 4. Since the Italian Market data has cer-
tain instances of prices being zero, therefore an alternate MAPE
definition is used in previous works to asses the forecasting accu-
racy. In the alternate MAPE definition, the mean price of the con-
sidered period is used in the denominator in place of the actual
price and this alternate definition is same as the MDE index which
we have considered in our work. The performance of the model is
compared with a dynamic price forecast method [49] and modified
relief and hybrid neural network technique (MR + HNN) [47] and it
is seen to be quite comparable with that of the previous works. In
six out of the eleven test months, the performance of WELM model
with ensembling techniques is found to be better than the other
works and the overall average MDE index for all the months is low-
er (8.57) compared to 13.57 and 9.37 obtained through other mod-
els. The range of error lies between 6% and 13% which is quite high
compared to the error ranges for other markets. The performance
of the model for data corresponding to months February-2004 to
December-2004 of the New York Market are also presented in Ta-
ble 5 and compared with the dynamic price forecast methodology
[49]. Significantly lower error indices (2.76–3.98%) are obtained for
all the months compared to the dynamic forecast technique.
Amongst all the markets, the Italian market is observed to have
higher ranges of error. This observation can be attributed to the
fact that Italian market is the youngest amongst all as it started
its operation on 1st April 2004. Since the market was not fully con-
solidated during the studied period, therefore its predictability is
quite low. On the other hand, PJM, New York and Ontario Markets
started operating in 1997, 1999 and 2002 respectively. Since these
markets are mature during the studied period, therefore their



Table 4
Monthly MDE for Italian electricity market.

Test month Dynamic price forecast MR + HNN WELM + ensembles

1 36.12 12.12 6.54
2 18.46 11.23 9.31
3 12.76 10.14 10.28
4 12.42 10.64 6.97
5 13.27 9.75 10.25
6 9.36 10.56 6.11
7 11.63 9.54 8.8
8 11.96 9.73 12.92
9 12.81 9.25 8.36
10 4.97 4.81 8.16
11 5.49 5.35 6.55

Average 13.57 9.37 8.57

Table 5
Monthly MDE for New York electricity market.

Test month Dynamic Price forecast WELM WELM + ensembles

1 11.54 3.57 3.49
2 6.48 3.69 3.61
3 7.32 3.28 3.20
4 8.91 3.56 3.47
5 10.59 3.57 3.45
6 10.7 2.75 2.76
7 7.8 2.94 2.87
8 6.05 2.63 2.58
9 9.62 3.70 3.42
10 8.8 4.00 3.98
11 9.03 3.90 3.79

Table 6
Performance indices of WELM for Ontario market.

Test week MAE MAPE MDE MeDE DRMSE

26 April–2 May 3.95 9.22 8.7 8.75 5.32
3–9 May 3.79 8.88 8.16 8.21 5.03
26 July–1 August 2.29 4.68 4.47 4.63 3.04
2–8 August 2.35 6.56 5.04 5.29 3.1
13–19 December 4.49 7.63 8.18 9.42 6.86
20–26 December 5.26 10.3 10.19 12.78 7.18
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predictability is higher and consequent error index ranges are
comparatively lower.

All the performance indices discussed in Section 2.4 are listed in
Table 6 corresponding to Ontario Market with WELM model and
without using the ensemble technique. Most of the research works
conducted so far in the area of forecasting have considered MAPE
as the standard index for evaluating as well as comparing the per-
formance of different models. It has been specifically used to eval-
uate the performance of load forecasting. But, it has been observed
that, MAPE may not be a reasonable criterion for the problem of
price forecasting [38,50]. The justification given here is that the ac-
tual value of price may be very small or even zero sometimes and
this may shoot up the MAPE index to a very high value. This prob-
lem does not occur in load forecasting as the loads generally have a
high value. In the alternative definition of MAPE proposed in [38],
the error is normalized by the Mean of the actual price profile in-
stead of the actual price in that hour. Although this alternative def-
inition prevents the error index from shooting up to very high
values, but still there are issues related to its application for the
price forecasting problem. The price series is not just composed
of very low and sometimes zero values but it is also notable for
spikes and outliers. Both, the Mean and the Median are measures
of the central tendency of the sample distribution. The Mean gives
equal weightage to all the sample values in determining the center
and therefore it is prone to get misled by extreme sample values
(outliers). On the other hand, Median discounts the effect of ex-
treme sample values and therefore is considered to be a robust sta-
tistic for skewed or outlier prone distributions like Electricity price
series. If the errors are normalized by individual sample values, the
final index will be biased by very large or very small sample values.
On the other hand median would remain constant for a given sam-
ple and would not be biased by extreme values. Therefore it would
be an appropriate, stable normalizing basis for the errors and can
be safely used to compare performances of different data sets with
different forecasting models. We also observed some peculiarities
related to error indices in our experiments which further strength-
en the need for alternate error indices and suitability of MeDE over
MAPE and other indices used contemporarily. For the same magni-
tudes of actual and forecasted points, there are significant and
sometimes peculiar differences between the performance indices.
When comparing the forecasting results across different data sets
corresponding to different markets, normalized error indices such
as MAPE, MDE and MeDE are generally preferred. There is a posi-
tive correlation between these indices in four out of six test week
i.e., if the value of MAPE decreases from one test week to another
test week, then the values of MDE and MeDE also decrease in cer-
tain proportion. However a peculiar behavior is seen for the first
test week (26 April–2 May) and the fifth test week (13–19 Decem-
ber). Here it is seen that the MAPE index for fifth week is lower
(7.63) in comparison to the first week (9.22). Contrary to this,
the MeDE index for the fifth week is higher (9.42) in comparison
to the first week (8.75). This happens because the MAPE index is
normalized by the actual price in that hour and it can be observed
from the Figs. (6 and 8) that the individual hour prices for the fifth
week are higher when compared to that of the first week; thereby
leading to the lower MAPE. The peaks in the fifth week are more
prominent which further bring down the MAPE index. The MeDE
index, on the other hand, is normalized by the median which re-
mains constant for the entire price profile. Therefore the MeDE in-
dex is less biased by the individual hour prices and unexpected
peaks. The MDE index also behaves similar to the MeDE index
although its normalization factor is the Mean price which also re-
mains constant for a given price profile. The difference occurs
when the Mean and the Median values are quite disparate depend-
ing on the distribution of the prices leading to different index mag-
nitudes. Median is considered to be a better measure of central
tendency than Mean in case of outlier prone distributions like elec-
tricity prices and therefore MeDE index can be considered to be a
more reliable representation of the forecasting accuracy.

The average computational time of the proposed approach for a
24 h forecasting horizon with one level decomposition is around
27.73 s using MATLAB on a PC with 16 GB of RAM and a 2.93-
GHz based processor. When the ensembling technique is applied,
the computational time for 10 ensemble members turns out to
be 59.55 seconds on average. Hence the remarkable features of
the proposed approach are lower modeling complexity, better fore-
casting accuracy and low computational time which makes it very
suitable for short term price forecasting requirements.

5. Conclusions

In the present scenario where competition and globalization is
overtaking all fields of life, electricity price forecasting plays a
more and more prominent role in a decision support system of
power market participants as well as consumers. Developing more
accurate and timely price forecasting methods has become an
important research topic. In this paper, we apply a relatively novel
neural network technique, extreme learning machine (ELM) in col-
laboration with a powerful multi-scale resolution technique
known as Wavelets to electricity price forecasting. ELM is claimed
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to have a higher generalization performance than the traditional
gradient-based learning algorithms and it also avoids many diffi-
culties faced by gradient-based learning methods such as stopping
criteria, learning rate, learning epochs, local minima, and the over-
tuning problem. This fact is verified in this work by using ELM for
price forecasting of Ontario, PJM, Italy and New York Electricity
market. The effectiveness of ELM is further enhanced by coupling
it with wavelet and ensembling techniques and different case stud-
ies are performed. Extensive experiments are performed to deter-
mine appropriate number of hidden nodes and the training data
requirement. Different performance indices are studied and it is in-
ferred that instead of contemporary measurement indices like
MAPE and MAE, MeDE is more suitable for the outlier prone elec-
tricity price series. Our experiments have also successfully demon-
strated that the hybrid wavelet-ELM model can produce smaller
predicting errors than the existing techniques.
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