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Abstract—We propose a globally convergent observer for
three-state nonlinear systems verifying the uniform complete
observability condition. By constructing a time-varying dif-
ferentiator, we are then able to reproduce the first and the
second derivatives of the system output without imposing
the boundedness of the states or the output. By exploiting
the algebraic observability of the system, we show that the
unmeasured states can be reproduced as nonlinear outputs of
the time-varying differentiator. This new technique has several
advantages over classical observer design methodologies that
are basically related to the form of the system nonlinearities. It
will be shown that the complete uniform observability implies
the existence of globally convergent observer without major
restriction on the system nonlinearities. Illustrative example is
provided to demonstrates the efficiency of the proposed design.

Index Terms—Nonlinear Systems; Time-varying Systems;
Exact differentiation; Observer Design; System Theory.

I. INTRODUCTION

NONLINEAR observer design for dynamical systems

has been the subject of many research papers where

several approaches have been used to reconstruct the un-

measured states from input and output measurements. As it

has been reported in the literature, the complexity of state

estimation depends on the nature of the system nonlinearities,

the kind of the input applied to the system being observed,

and the form of the system output that plays a key role

in the linearization of the error dynamics and its stability.

The non availability of a straightforward design method for

constructing an observer for a given nonlinear system has

created many challenging methods of observation that are

generally dependent upon state transformations, the structure

of the system being observed, the form of nonlinearities, the

boundedness of the system states or the Lipschitz property of

the system nonlinearities. Among the most popular strategies

that have been employed to build an observer, we cite error-

linearization-based algorithms [1], [2], [3], [4], Lyapunov

design procedures [5], [6] and sliding-mode observer design

[7], [8]. Other challenging procedures as numerical obser-

vation methods [9], neural-network observation techniques

[10], algebraic nonlinear observer design [11], and circle-

criterion observation methods [12], [13], [14], [15]. In case

where the system fails to be put in certain form of observabil-

ity, high-gain observer design reveals as a robust technique

that is often used to reconstruct the system states under the

assumption that the vector nonlinearity is globally or locally
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Lipschitz, see [16], [17], [18], [19], [20], [21]. However,

the Lipschitz constraint is not always verified and prevents

generally the global convergence of the high-gain observer.

Moreover, the existence of the observer gain is conditioned

by the value of the Lipschitz constant which is generally

required to be small enough, see [21] for more details. Even

though the circle-criterion observer design is conceptually

free form the information of the Lipschitz constant [22],

[14], this interesting design remains limited to systems with

positive-gradient nonlinearities.

In this paper, we show that the uniform algebraic ob-

servability implies the existence of a nonlinear observer for

three-state dynamical systems. The nonlinear observer is

constructed as a time-varying differentiator with nonlinear

outputs. These nonlinear outputs will serve as tools to

reconstruct the states of the system being observed. we show

that the estimates converge with the same rate of convergence

of the differentiator states whatever the form of the non-

linearities. The proposed technique can be generalized for

larger class of systems that have not necessarily triangular

structures as it is shown through an example of a working

2-link robot.

II. PRELIMINARIES

For the clarity of the next developments, we would rather

recall some concepts of nonlinear observability.

A. Definitions

Definition 1: Consider the nonlinear system
{

ẋ = f(x, u),
y = h(x),

(1)

where x = x(t) ∈ M ⊂ IRn represents the system state

vector, f(·, ·) is smooth vector with f(0, 0) = 0 and u(t) ∈
U ⊂ IRm is the control input. The output nonlinearity

y = y(t) = h(x(t)) ∈ IRp is supposed to be smooth

with h(0) = 0. We say that system (1) is observable if for

every two different initial conditions x0 and x̄0 there exist

an interval [0, T ], T ∈ IR>0 and an admissible control u(t)
defined on [0, T ] such that the associated outputs y(x0, u(t)),
y(x̄0, u(t)) are not identically equal on [0, T ]. We say, in

this case, that the control input u(t) distinguishes the pair

(x0, x̄0) on [0, T ].
Definition 2: Consider system (1). The control input

u(t) ∈ U ⊂ IRm is said universal on [0, T ], if it distin-
guishes every different initial states (x0, x̄0) on [0, T ].

Definition 3: System (1) is said uniformly observable if

every admissible control u(t) defined on [0, T ], is a universal
one.
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Definition 4: System (1) is said to be algebraically ob-

servable if there exist two positive integers µ and ν such

that

x(t) = φ
(

y, ẏ, ÿ, · · · , y(µ), u, u̇, ü, · · · , u(ν)
)

(t), (2)

where φ(·) : IR(µ+1)p × IR(ν+1)m 7→ IRn is a differentiable

vector valued nonlinearity that depends on the inputs, the

outputs, and their respective higher derivatives.

The result of the following Lemma will be used in the proof

of the main statement of this paper.

Lemma 1: Let f(t) : IR≥0 7→ IR be a uniformly bounded

and a continuously differentiable function for all t ≥ 0, then

i) lim
t→∞

e−t2
∫ t

0

eτ2

f(τ) dτ = 0, (3)

and

ii) lim
t→∞

e−t2
∫ t

0

f(τ)

(
∫ τ

0

eζ2

dζ

)

dτ = 0, (4)

Proof: See [11].

B. System description

Consider the three-state nonlinear system

ẋ1 = x2 + g1(x1, u),

ẋ2 = x3 + g2(x1, x2, u),

ẋ3 = g3(x1, x2, x3, u),

y = x1,

(5)

where u = u(t) ∈ IRm is a C
1 control input, y =

y(t) ∈ IR is the system measured output and g1(x1, u),
g2(x1, x2, u), and g3(x1, x2, x3, u) are smooth, non-singular
and continuous nonlinearities. We assume that the following

assumptions hold for t ≥ 0.
Assumption 1: For a given input u(t), the system output

y(t) is continuously measured, smooth, and twice continu-

ously differentiable with respect to time. The input u(t) is

differentiable and is not necessarily bounded.

Assumption 2: For a given input u ∈ IRm, the system

states do not leave any compact set. In other words, the

system trajectories are well-defined for all t ≥ 0 such that

for any instant t ≥ 0, we can find a large compact set Ωt

where the system states live in.

Assumption 3: The system nonlinearities along with their

Jacobian are well defined with respect to their arguments.

Starting from the first dynamical equation of (5), we have

x1 = y,

x2 = ẏ − g1(y, u).
(6)

From the second equation of (5), we extract the state x3 as

x3 = ẋ2 − g2(y1, x2, u). (7)

Substituting (6) in (7), we get

x3 = ẋ2 − g2(y1, ẏ − g1(y, u), u). (8)

By differentiating the second equation in (6) and substituting

in (8), we get

x3 = ÿ − ∂g1

∂y
(y, u) ẏ − ∂g1

∂u
(y, u)u̇

− g2(y1, ẏ − g1(y, u), u).

(9)

The aforementioned system is observable for any input if the

system nonlinearities g1(s1, u), g2(s1, s2, u)
∂g1

∂y
(y, u), and

∂g1

∂u
(y, u) are non-singular and well-defined for all s1, s2

∈ IR and t ≥ 0.

C. The second-order time-varying differentiator

Here, we show how to set up a model-free system that

estimates the first and the second derivatives of any dif-

ferentiable measured output. The differentiation observer is

written in the controllable canonical form where the signal

to be differentiated appears as a bounded input in the last

dynamical equation of the time-derivative observer. The

desired output derivatives are then given as nonlinear outputs

of the differentiator states. The design is clarified in the

following statement.

Theorem 1: Let y(t) be a C
2 continuous-time signal

which is not necessarily bounded. Consider the time-varying

system

ξ̇1(t) = ξ2(t),

ξ̇2(t) = ξ3(t),

ξ̇3(t) = −α3 t3(ξ1 − arctan(y(t))) − 3 α2 t2 ξ2(t)

− 3 α t ξ3(t),

(10)

where α > 0 is a constant. Then,

lim
t→∞





y(t)
ẏ(t)
ÿ(t)



 =

lim
t→∞





tan(ξ1(t))
(1 + y2(t)) ξ2(t)

2 y(t)(1 + y2(t))ξ2
2(t) + (1 + y2(t))ξ3(t)



 .

(11)

Proof: To prove this result, it is sufficient to prove that

lim
t→∞

(ξ1(t) − arctan(y(t))) = 0. By putting z(t) = ξ1(t)

then, the time-varying system (11) admits the following

input-output representation:

z(3)(t) + 3 α t z̈(t) + 3 α2 t2 ż(t)

+ α3 t3
(

z(t) − arctan(y(t))
)

= 0.
(12)

By taking the following change of variable: z(t) =

e−
α
2

t2 q(t) where q(t) is the new time-dependent variable

then, q(t) verifies the following differential equation:

q(3)(t) − 3 α q̇(t) − α3 t3 e
α
2

t2 arctan(y(t)) = 0. (13)
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By solving (13) with respect to the variable q(t), we get

q(t) = C3 +

∫
(

C1 e
√

3α t + C2 e−
√

3α t

)

dt

+

√
3

6
α

5

2

∫

e
√

3α t

×
∫

(

t3 arctan(y(t)) e−
1

2
t(2

√
3α−α t)dt

)

dt

−
√

3

6
α

5

2

∫

e−
√

3α t

×
∫

(

t3 arctan(y(t)) e
1

2
t(2

√
3α+α t)dt

)

dt.

(14)

where C1, C2 and C3 are the integration constants. Let us

note ŷ(t) = arctan(y(t)) then by returning back to the

previous variable z(t), we have

z(t) = e−
α
2

t2C3 + e−
α
2

t2
∫

(

C1 e
√

3α t + C2 e−
√

3α t

)

dt

+

√
3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫
(

t3ŷ(t) e−
1

2
t(2

√
3α−α t)dt

)

dt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫
(

t3ŷ(t) e
1

2
t(2

√
3α+α t)dt

)

dt.

(15)

For any α > 0, we have

lim
t→∞

(

e−
α
2

t2C3 + e−
α
2

t2
∫

(

C1 e
√

3α t + C2 e−
√

3α t

)

dt

)

= 0.
(16)

This implies that

lim
t→∞

q(t) = lim
t→∞

(√
3

6
α

5

2 e−
α
2

t2
∫

e
√

3αt×

×
∫

(

t3ŷ(t) e−
t
2
(2

√
3α−α t)dt

)

dt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3αt

∫
(

t3ŷ(t) e
t
2
(2

√
3α+α t)dt

)

dt

)

.

(17)

Define

F1(t) =

∫

t3ŷ(t) e−
t
2
(2

√
3α−α t)dt,

F2(t) =

∫

t3ŷ(t) e
t
2
(2

√
3α+α t)dt.

(18)

Let

ψ1(t) =

∫

t3 e−
t
2
(2

√
3α−α t)dt,

=
(α t2 +

√
3α t + 1) e−

t
2
(2

√
3α−α t)

α2

ψ2(t) =

∫

t3 e
t
2
(2

√
3α+α t)dt

=
(α t2 −

√
3α t + 1) e

t
2
(2

√
3α+α t)

α2
.

(19)

Integrating F1(t) and F2(t) by parts, we get

F1(t) = ψ1 ŷ(t) −
∫

˙̂y(t)ψ1dt,

F2(t) = ψ2 ŷ(t) −
∫

˙̂y(t)ψ2dt.

(20)

Then, using (17) and (20), we can write

lim
t→∞

z(t) = lim
t→∞

[√
3

6
α

5

2 e−
α
2

t2
∫

e
√

3α tψ1ŷ(t) dt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α tψ2ŷ(t) dt

+

√
3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)ψ1dtdt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)ψ2dt dt

]

.

(21)

Let

F3(t) =

∫

e
√

3α tψ1ŷ(t) dt,

F4(t) =

∫

e−
√

3α tψ2ŷ(t) dt

(22)

Then, by integration by parts, we get

F3(t) = φ1 ŷ(t) −
∫

˙̂y(t)φ1dt,

F4(t) = φ2 ŷ(t) −
∫

˙̂y(t)φ2dt.

(23)

where

φ1(t) =

∫

e
√

3α tψ1dt =
e

α
2

t2(
√

αt +
√

3)

α
5

2

,

φ2(t) =

∫

e−
√

3α tψ2dt =
e

α
2

t2(
√

αt −
√

3)

α
5

2

.

(24)

Remark that
(
√

3

6
α

5

2 φ1(t) −
√

3

6
α

5

2 φ2(t)

)

ŷ(t) = ŷ(t). (25)

This gives

lim
t→∞

z(t) = lim
t→∞

[

arctan(y(t))

−
√

3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)φ1(t) dtdt

+

√
3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)φ2(t) dt dt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)ψ1dtdt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)ψ2dt dt

]

.

(26)

Using the result of Lemma 1, we can always find t = T > 0
such that ∫

e
α
2

t2 ≤ e
α
2

t2 , t ≥ T. (27)
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Furthermore,

∫

φ1(t)dt =
1

α3
e

α
2

t2 +
1

α3

∫

e
α
2 t2,

∫

φ2(t)dt =
1

α3
e

α
2

t2 −
√

3α

α3

∫

e
α
2 t2

(28)

Since ŷ(t) is globally bounded then,

lim
t→∞

√
3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)φ1(t) dtdt

≤ lim
t→∞

√
3

6
√

α
sup
t≥0

|ŷ(t)|e−α
2

t2
∫

e
√

3α t

(

e
α
2

t2 +

∫

e
α
2

t2
)

= lim
t→∞

√
3

3
√

α
sup
t≥0

|ŷ(t)|e−α
2

t2
∫

e
α
2

t2+
√

3α tdt

= lim
t→∞

√
3

3
√

α
sup
t≥0

|ŷ(t)|e−α
2

t2
∫

e
α
2

t2dt = 0.

(29)

From (24), we have φ1(t) ≥ φ2(t) ∀t. Taking into account

(28), we have

lim
t→∞

√
3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)φ2(t) dtdt

≤ lim
t→∞

√
3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)φ1(t) dtdt

≤ lim
t→∞

√
3

6
√

α
sup
t≥0

|ŷ(t)|e−α
2

t2
∫

e−
√

3α t

(

e
α
2

t2 +

∫

e
α
2

t2
)

≤ lim
t→∞

√
3

3
√

α
sup
t≥0

|ŷ(t)|e−α
2

t2
∫

e
α
2

t2−
√

3α tdt = 0.

(30)

Consequently,

lim
t→∞

z(t) = lim
t→∞

[

arctan(y(t))

−
√

3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)ψ1dtdt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)ψ2dt dt

]

.

(31)

Similarly, since ψ1(t) > 0

−
√

3

6
α

5

2 e−
α
2

t2
∫

e
√

3α t

∫

˙̂y(t)ψ1dt dt

−
√

3

6
α

5

2 e−
α
2

t2
∫

e−
√

3α t

∫

˙̂y(t)ψ2dtdt

≤
√

3

6
α

5

2 sup
t≥0

| ˙̂y(t)|e−α
2

t2
∫

e
√

3α t

∫

ψ1dtdt

+

√
3

6
α

5

2 sup
t≥0

| ˙̂y(t)|e−α
2

t2
∫

e−
√

3α t

∣

∣

∣

∣

∫

ψ2dt

∣

∣

∣

∣

dt

(32)

From (19), we can find two positive constants Cα and C̄α

such that

∫

ψ1(t)dt =
1

α
5

2

(
√

αt + 2
√

3) e−
t
2
(2

√
3α−α t)

+
6
√

α

α
5

2

∫

e
t
2
(−2

√
3α+α t)dt

≤ Cα e−
t
2
(2

√
3α−α t) + C̄α

∫

e
t
2
(−2

√
3α+α t)dt.

(33)

On the other hand, we have

∣

∣

∣

∣

∫

ψ2(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

α
5

2

(
√

αt − 2
√

3) e
t
2
(2

√
3α+α t)

+
6
√

α

α
5

2

∫

e
t
2
(2

√
3α+α t)dt

∣

∣

∣

∣

∣

≤ Kα e
t
2
(2

√
3α+α t) + K̄α

∫

e
t
2
(2

√
3α+α t)dt.

(34)

Based on (34), we can conclude by the use of Lamma 1 that

lim
t→∞

(√
3

6
α

5

2 sup
t≥0

| ˙̂y(t)|e−α
2

t2
∫

e
√

3α t

∫

ψ1dt dt

+

√
3

6
α

5

2 sup
t≥0

| ˙̂y(t)|e−α
2

t2
∫

e−
√

3α t

∣

∣

∣

∣

∫

ψ2dt

∣

∣

∣

∣

dt

)

= 0.

(35)

Finally, we can write that lim
t→∞

(ξ1 − ŷ(t)) = 0. From the

dynamics of (10), we conclude that lim
t→∞

(ξi−ŷ(i−1)(t)) = 0,

2 ≤ i ≤ n. Consequently, (11) is verified. This ends the

proof.

Remark that the differentiator states are given as multiple

integrals of a time-varying combination of the differentiator

states. For the null initial conditions, i.e., ξi(0) = 0, 1 ≤ i ≤
3, we have

ξ1(t) =

∫ t

0

∫ t

0

∫ t

0

(

− α3 t3(ξ1 − arctan(y(t)))

− 3 α2 t2 ξ2(t) − 3 α t ξ3(t)

)

dt,

ξ2(t) =

∫ t

0

∫ t

0

(

− α3 t3(ξ1 − arctan(y(t)))

− 3 α2 t2 ξ2(t) − 3 α t ξ3(t)

)

dt,

ξ3(t) =

∫ t

0

(

− α3 t3(ξ1 − arctan(y(t)))

− 3 α2 t2 ξ2(t) − 3 α t ξ3(t)

)

dt,

(36)

which implies that the estimates states are robust with respect

to measurement errors that may corrupt the bounded signal

arctan(y(t)). Actually, the differentiation observer gains,

which are unbounded time-dependent, can be set bounded

by adaptation. In other words, by setting the following
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differentiation scheme

ξ̇1(t) = ξ2(t),

ξ̇2(t) = ξ3(t),

ξ̇3(t) = −θ3(t)(ξ1 − arctan(y(t))) − 3 θ2(t) ξ2(t)

− 3 θ(t) ξ3(t),

θ̇(t) =

{

α, if; |ξ1 − arctan(y(t))| 6= 0,
0, if; |ξ1 − arctan(y(t))| = 0,

(37)

the parameter θ(t) = α t when |ξ1 − arctan(y(t))| 6= 0
and equal to some constant when ξ1 = arctan(y(t)). This
adaptive scheme appends the sensitivity of the differentiator

to measurements errors and allows the boundedness of the

observer gain even the output to be differentiated may be

unbounded.

Remark 1: The constant α is a positive parameter that reg-

ulates the speed of convergence. For high-frequency outputs,

it is recommended to chose α sufficiently large in order to

compensate the effects of fast changes in the signal direction

and assure a fast convergence to the true derivatives.

III. OBSERVER DESIGN

By exploiting the triangular structure of system (5) and

the algebraic observability of all the unmeasured states, we

show that the unmeasured states can be seen as nonlinear

output of the developed time-varying differentiator. The rate

of convergence of the estimates depends on the rate of

convergence of the time-varying differentiator. This result

is given in the following statement.

A. The nonlinear observer

Based on the previous developments, the analysis of

the nonlinear algebraic observer is given in the following

statement.

Theorem 2: Consider system (5) under assumptions 1-3.

Define the nonlinear observer

ξ̇1 = ξ2, ξ̇2 = ξ3,

ξ̇3 = −α3 t3(ξ1 − arctan(y)) − 3 α2 t2 ξ2 − 3 α t ξ3,

x̂1 = tan(ξ1), x̂2 = ξ2 − g1(y, u),

x̂3 = ξ3 −
∂g1

∂y
(y, u) ξ2 −

∂g1

∂u
(y, u)u̇

− g2(y1, ξ2 − g1(y, u), u).
(38)

Then, for any initial condition x̂0 ∈ IR3, we have

lim
t→∞

(xi − x̂i) = 0, 1 ≤ i ≤ 3. (39)

Proof: Using the result of Theorem 1 we conclude

that the first and the second derivatives of arctan(y(t))
are reproduced asymptotically by ξ2 and ξ3, respectively

the static expression (6) and (9) derived from the system

dynamics can be reproduced by replacing the true derivatives

by their estimates. This ends the proof.

To illustrate the observer design, let us consider the

following nonlinear system

ẋ1 = x2 + x1 u, ẋ2 = x3 +
u

1 + x2
1 + x2

2

,

ẋ3 = −x3 + x1 x2 + u, y = x1.
(40)

The system is algebraically observable since y = x1, x2 =
ẏ−y u, x3 = ÿ−ẏ u−yu̇−u/(1+y2+(ẏ−y u)2). Based on
these algebraic expressions the nonlinear observer is readily

constructed as

ξ̇1 = ξ2,

ξ̇2 = ξ3,

ξ̇3 = −α3 t3(ξ1 − arctan(y)) − 3 α2 t2 ξ2 − 3 α t ξ3,

x̂1 = tan(ξ1),

x̂2 = ξ2 − y u,

x̂3 = ξ3 − ξ2 u − yu̇ − u/(1 + y2 + (ξ2 − y u)2).

(41)

B. Application to 2-link robotic manipulator

In fact, the nonlinear observer design proposed herein

does not depend on the triangular structure of the system.

To clarify this point let us consider the 2-link robotic

manipulator model represented in Fig. 1 [23]. The dynamical

equation of the robot are given by

[

D11(φ) D12(φ)
D12(φ) D22(φ)

] [

θ̈

φ̈

]

=

[

F12(φ) φ̇2 + 2F12(φ) θ̇ φ̇

−F12(φ)θ̇2

]

+

[

q1(θ, φ) g
q2(θ, φ) g

]

+

[

u1

u2

]

,

(42)

where

D11(φ) = (m1 + m2)r
2
1 + m2r

2
2 + 2m2r1r2 cos(φ) + J1,

D12(φ) = m2r
2
2 + m2r1r2 cos(φ),

D22(φ) = m2r
2
2 + J2,

F12(φ) = m2r1r2 sin(φ),

q1(θ, φ) = −
(

(m1 + m2)r1 cos(φ) + m2r2 cos(φ + θ)

)

,

q2(θ, φ) = −m2r2 cos(θ + φ).
(43)

The values of the system parameters are: r1 = 1 m, r2 =
0.8m, J1 = 5 Kg, J2 = 5 Kg, m1 = 0.5Kg, m2 = 6.26Kg.
If we assume that θ and φ are measured then by putting

x1 = θ, x2 = θ̇, x3 = φ, x4 = φ̇ then the dynamics of the

robot is given by the following state-space representation:

ẋ1 = x2, ẋ2 = f1(x, u), ẋ3 = x4, ẋ4 = f2(x, u),

y1 = x1, y2 = x3,
(44)
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Fig. 1. The 2-link robot

where
[

f1(x, u)
f2(x, u)

]

= D−1(x3)

[

F12(x3)x2
4 + 2F12(x3)x2 x4

−F12(x3)x
2
2

]

+ D−1(x3)

[

q1(x1, x3) g
q2(x1, x3) g

]

+ D−1(x3)

[

u1

u2

]

,

D(x3) =

[

D11(x3) D12(x3)
D12(x3) D22(x3)

]

.

(45)

System (44) has not triangular structure, but the system is

algebraically observable in the sense that the unmeasured

state variables are given as the first derivatives of the

measured variables, i.e., x2 = ẏ1, x4 = ẏ2. In Fig. 2, we

have represented the estimated state the true state x2 and its

estimate x̂2 given by the algebraic observer when u1 = −x1,

u2 = −x3.

IV. CONCLUSION

In the paper, we showed that the uniform complete observ-

ability condition implies the existence of globally convergent

observer for three-states nonlinear systems. The proposed

technique enjoys the property of being independent on the

form of the system nonlinearities whenever the algebraic

observability condition is verified.
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