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Abstract - This paper describes an off-line bias 
estimation and correction system for Air Traffic Control 
related sensors, used in a newly developed Eurocontrol 
tool for the assessment of ATC surveillance systems. 
Current bias estimation algorithms are mainly focused in 
radar sensors, but the installation of new sensors 
(especially Automatic Dependent Surveillance-Broadcast 
and Wide Area Multilateration) demands the extension of 
those procedures. In this paper bias estimation 
architecture is designed, based on error models for all 
those sensors. The error models described rely on the 
physics of the measurement process. The results of these 
bias estimation methods will be exemplified with 
simulated data.    

Keywords: Bias estimation, Air Traffic Control, ADS-B, 
Multilateration. 

1 Introduction 
TRES (Trajectory Reconstruction and Evaluation Suite) 
will become in the near future a replacement for some 
parts of current versions of SASS-C (Surveillance 
Analysis Support System for Centres) suite [1]. This is a 
system used for the performance assessment of ATC 
multisensor/multitarget trackers. This paper describes the 
overall architecture of the assessment system, and details 
some of its elements related to opportunity trajectory 
reconstruction.  
Opportunity trajectory reconstruction (OTR) is a batch 
process within TRES where all the available real data 
from all available sensors is used in order to obtain 
smoothed trajectories for all aircraft in the area of interest. 
It requires accurate measurement-to-reconstructed 
trajectory association, bias estimation and correction to 
align different sensor measurements, and adaptive 
multisensor smoothing to obtain the final interpolated 
trajectory.  It should be pointed out that it is an off-line 
batch process potentially quite different to usual real time 

data fusion systems used for ATC. Data processing order 
and processing techniques will be different.  
In fact, one of the main uses of TRES is the evaluation of 
the performance of real time multisensor-multitarget 
trackers used for ATC, when they are provided with the 
same measurements as TRES.  OTR works as a special 
multisensor fusion system, aiming to estimate target 
kinematic state, in which we take advantage of knowledge 
of future target position reports (smoothing).   
TRES must be able to process the following kinds of data: 
• Radar data, from primary (PSR), secondary (SSR), 

and Mode S radars, including enhanced surveillance. 
• Multilateration data from Wide Area Multilateration 

(WAM) sensors.  
• Automatic dependent surveillance (ADS-B) data.  
The complementarity nature of these sensor techniques 
allows a number of benefits (high degree of accuracy, 
extended coverage, systematic errors estimation and 
correction, etc.) and brings new challenges for the fusion 
process in order to guarantee an improvement with respect 
to any of the sensor techniques used alone. An important 
novelty is the integration of traditional ground based 
surveillance (PSR/SSR radars) with modern sensors such 
as WAM, with increased accuracy, and airborne sensors 
providing extended detection capability (velocity and 
maneuvers). The fusion of all measurements requires new 
solutions and a robust process that considers detailed 
characteristics of all data sources and checks their 
consistency before being fused. 
The two basic aspects for estimating the reference 
trajectory are the development of appropriate models for 
sensor errors and target behavior. The model of sensor 
errors should address the probability density function 
(systematic and random components), to be exploited in 
the reconstruction process. Regarding the model of target 
behavior, it has been described in some previous works, 
and it is based in a practical implementation of the 
optimal smoother [1] and taking advantage of physical 
motion models tuned for aircraft flying in controlled 
airspace.  
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Much effort has been devoted in the last years to the 
definition of bias estimation procedures for multisensor 
multitarget tracking systems (among others [2][3][4][5]). 
These efforts have been mainly concentrated, in Air 
Traffic Control environments, to radar bias estimation and 
correction, as they are the most widely used sensors for 
this applications.  
With the advent of new families of sensors the means for 
bias estimation must be extended. In this paper we 
propose and evaluate methods for this estimation, for en-
route or terminal area (TMA). Those methods are based 
on the definition of error models for the sensors, and 
propose an architectural framework for bias estimation 
potentially extensible to other applications. 
The paper starts with the definition of those error models, 
and then describes and justifies the bias estimation 
architecture, providing mathematical derivations of the 
different stages. 
Finally, some results from simulated scenarios are 
provided, showing the convergence of the different bias 
estimation stages, and the effect over the tracking system. 
 
2 Sensor Error models 
Next we will define the error models for bias estimation 
for the different sensors previously described. 
It should be noted that some of these bias terms are surely 
changing in time, at a rate dependent on propagation 
changes, other sensor calibration means (as station 
synchronization procedures for multilateration). A real 
time system trying to cope with these terms should define 
means to either: 
• Forget sensor bias over time. 
• Include models with changing bias in the estimation 

procedures.  
In this paper we will assume constant biases. 
2.1 ATC Radar Error models 
There are mainly two types of radars used in ATC, 
primary (PSR) and secondary (SSR and Mode S) radars. 
They measurement range and azimuth, and in the case of 
SSR or Mode S, they also receive height from the aircraft 
barometer.  
In the Mode-S and conventional secondary radar error 
model, k-th range-azimuth measurement (Rk, θk) include 
the terms in (1): 
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where: 
(Rid(k), θid(k))are the ideal target position for the k-th 
measurement, expressed in local polar coordinates. 
• ∆R: radar range bias. 
• K is the gain of range bias. 
• ∆Rj: transponder induced bias of j-th aircraft, 

different for each aircraft. 

• ∆θ is the azimuth bias. 
• (∆θ1,∆θ2) are the values which characterize the 

radar’s azimuth eccentricity, related with maximum 
eccentricity and angle of maximum eccentricity. 

• (nR(k),nθ(k)) are measurement noise errors. 
Primary radar has the same model except the lack of  ∆Rj 
term. We assume transponder antennae are pretty near the 
center of the aircraft.  
When we translate this measurement to stereographic 
plane, we would use a quite exact non-linear coordinate 
transformation method [6]. This method implements a 
function we will call fRadar(.). So, to project error terms 
into stereographic plane, we can make first order 
approximation of this transformations, and we will have: 
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where: 
• xid(k), yid(k) is the ideal target position for the k-th 

measurement. 
• HR is the Jacobian of f (.) with respect to the 

vector  It is a 2x6 

matrix, whose two first rows are equal, raising a 
potential observability problem in our bias 
estimation procedures. 
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• GR is the Jacobian of fRadar(.) with respect to the 
vector ] .)(  It is a 2x2 matrix. [ )( T
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There is also a potential time bias, leading to an 
equivalent position bias aligned with velocity. Then, 
(X,Y) projected measurements will suffer an additional 
bias of the form: 
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where: 
• (VX, VY) is the velocity vector of the target in this 

time. 
• ∆t: is the time bias for the radar. 
Finally, it should be noted there are collocated PSR-SSR 
and PSR-Mode S radars, for which we will define two 
virtual sensors, one for PSR and another one for the 
secondary radar. 
2.2 ADS-B Error models 
With precise navigation systems as the ones being 
currently deployed in modern aircraft, ADS-B 
measurements suffer mainly from a time-stamping error 
which could lead to a time bias, different for each aircraft.   



The k-th position measurement (xk, yk), obtained using the 
stereographic projection over latitude, longitude and 
height measurements, may be modelled as: 
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where: 
• xid(k), yid(k) is the ideal target position for the k-th 

measurement. 
• (VX, VY) is the velocity vector of the target in this 

time. 
• ∆tj: is the time bias for j-th aircraft. 
• nx(k), ny(k) are measurement noise errors 
2.3 Wide area multilateration Error models 
Wide area multilateration measurement performs Time 
Difference Of Arrival (TDOA) estimation to calculate 
target position. No matter the method used for position 
estimation, the basic measurements used to obtain the 
aircraft position are the times of arrival of the same signal 
emitted from this target. The bias of multilateration is a 
function of several variables, including: 
• The geometry of the receiver(s) and transmitter(s) 
• The timing accuracy of the receiver system 
• The accuracy of the synchronization of the 

transmitting sites or receiving sites. This can be 
degraded by unknown propagation effects. 

It should be noted that the multilateration system has 
internal calibration means, as without them no position 
estimation would be possible. So we are dealing with 
remaining errors after this calibration. This is a subject 
still under active research, a description of the main error 
terms may be found in [7]. In this system we assume the 
bias changes in space are not too fast, and therefore we 
perform a discretization of the space in cells. Then, the k-
th position measurement (xk, yk), obtained using the 
stereographic projection over latitude, longitude and 
height measurements, may be modelled as: 
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where: 
• xid(k), yid(k) is the ideal target position for the k-th 

measurement. 
• (VX, VY) is the velocity vector of the target in this 

time. 
• (∆X(n),∆Y(n)): is the X,Y bias for n-th cell in the cell 

list, equal for all aircraft.  
• ∆t: is the time bias for all aircraft and cells. 
• (nx(k), ny(k)) are the noise components in 

stereographic plane.  
 
3 Bias estimation architecture 
From the previous description it is evident there are three 
different kinds of bias terms: 
• Terms dependent on sensor 

• Terms dependent on the sensor-target pair 
• Terms only dependent on the target 
The bias estimation procedure takes into account this fact, 
and is based on three steps: 
• Track bias estimation: From all the available data 

from a given aircraft, integrated in a multisensor 
track, it obtains an estimation of all the bias terms 
from all sensors providing measurements to this 
track. These same measurements will be used for 
calculating aircraft trajectory, but this functionality 
will not be analyzed here. Only measurements 
obtained during constant velocity movement 
segments should be used. In next sections we will 
both describe the general method for this function, 
and provide the parameters needed to implement 
them given the previous error models. It should be 
noted that, in this stage, any observability problem 
will be addressed by estimating jointly the 
problematic variables. In later stages we will try to 
solve those problems. As important as obtaining a 
vector of bias estimates is obtaining a consistent 
measurement of its covariance matrix.  

• Sensor bias estimation: This method integrates all 
track bias estimators in an efficient manner, to obtain 
sensor related biases. It assumes the previously 
described bias vectors are independent 
measurements (as they come from different aircraft 
measurements) of the sensor bias terms. Those 
measurements have a covariance matrix which, in 
most situations, is equal to the one obtained as result 
of track bias estimation. But, due to observability 
problems, and to the presence of target related 
biases, sometimes it is necessary to make some 
changes in these covariances. We will describe in 
later sections those modifications and the complete 
sensor bias derivation procedure. 

• Target bias estimation: This is obtained for each 
aircraft, provided sensor related bias was previously 
corrected. This estimation must be performed either 
in parallel or almost in parallel with target tracking. 

In this paper we are not addressing the potential problems 
related to sensor integrity potentially leading to bias 
model mismatch. If those problems could arise, the 
procedure for bias estimation should be capable of 
detecting them and changing its behavior, not using this 
degraded sensor information for bias estimation (neither 
for tracking). 
Due to current state of maturity of the deployed ATC 
measurement system, radar systems are in general 
assumed to be safer, while WAM and ADS-B systems 
have yet to show their operational validity. Due to that 
lack of expertise in the use of those new sensors, a 
conservative approach was taken, where the processing 
order is the one described next.  
ADS and WAM bias estimation and correction are 
independent, and their order is not important. Radar bias 



estimation and corrections are a prerequisite for those 
other sensors estimation. 
Therefore, the order in which the all sensor and target 
biases are estimated and corrected is depicted in next 
figure. 
 

Radar Track Bias
Estimation

Radar SensorBias
Estimation & 
Correction

Radar Target Bias
Estimation & 
Correction

ADS TrackBias Estimation

ADS Sensor Bias
Estimation

ADS Target Bias
Estimation & 
Correction

WAM Track Bias Estimation

WAM Sensor Bias
Estimation & 

Correction

 

Figure 1: Bias estimation and correction algorithms 

Please note there are several similar processes (track bias 
estimations for each kind of sensor, sensor oriented bias 
estimation, target oriented estimation and correction). 
They all are based on a set of generic algorithms to be 
described next. ADS-B and WAM bias estimation have as 
a prerequisite the estimation of radar biases. This is a 
limitation of current OTR to be addressed in next 
versions. 
 
3.1 Generic Track bias estimation 
This block is in charge of calculating biases for all sensors 
feeding a given multisensor track. It is based on a Kalman 
filter with stacked parameters for: 
• Target position. 
• Target velocity. 
• Bias parameters to be estimated for all sensors 

feeding the multisensor track. 
Each target is seen for a different set of sensors, and 
therefore the state vector of this Kalman filter is different. 
Even more, for a same given target, the set of sensors 
feeding its track changes in time, and therefore the 
meaning of the state vector is changing as it traverses the 
coverage of different sensors. 
To reduce computational load, we converted the Kalman 
filter in a set of coupled filters by rearranging the 
information in the filter. The results are identical to those 
obtained in a Kalman filter for the estimation of all bias 
terms. Each of the bias estimates may be seen as a set of 
rows in the complete Kalman filter state vector. Using 
this, and the fact that each measurement comes only form 
one sensor, and therefore only these sensor bias terms are 

projected into it, the Kalman filter may be arranged in a 
highly efficient manner. We arrange the complete bias 
estimate as a list of vectors (to be called estimate), the 
first containing the position (X,Y) and velocity (Vx,Vy) in 
stereographic coordinates, and the others containing the 
bias estimate of each of the sensors. With this structure in 
mind, each time we add a measurement from a new 
sensor, with its own bias terms, we will add a new 
element in the estimate list. 
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Figure 2: List of estimates in a track bias estimator 

Each element of estimate list could have a different size, 
as it will contain the bias terms potentially belonging to 
different kinds of sensors. 
For the posterior calculation of sensor and target oriented 
bias terms we would need to be able to calculate not only 
the whole vector estimate from each target, but also its 
associated covariance matrix. We can arrange the 
covariance elements in a list of lists of covariances 
between the estimators in estimate list. As the complete 
covariance is a symmetric matrix, it is not necessary to 
save all the covariances, but only a part of them (roughly, 
one half). We would need to have access to all cross 
covariances between estimates. Imagine we call Ci,j the 
cross covariance between estimate[i] and estimate[j]. It is 
clear, in this case, . We call this list of lists 

covariance.  

T
jiij CC ,, =

The list of lists indicated covariance has the structure in 
Figure 3. Two indexes are used to access each of the 
elements. It may be noted that Ci,j is, in this structure, in 
position covariance[i][j-i]. With these structures in mind, 
each time we add measurements from a new sensor (with 
index N), it will append a new element to each of the pre-
existing lists covariance[j]. Finally, a new list 
(covariance[N]) will be created and appended, containing 
the initialization of covariance[N][0] (CN,N). 



 

C0,0 C0,1 C0,2 

C1,1 C1,2 

C2,2 

covariance[0] 

covariance[1] 

covariance[2] 

covariance[0] [1] 

covariance[1] [1] 
 

Figure 3: Structure of covariance list in local bias 
estimator 

With these structures in mind, the track bias estimation 
performs the following procedure based on constant 
velocity movement segments (note we need some delay 
between real time and time to process measurements, in 
order not to process measurements in maneuvering 
conditions).  
We then initialize the estimate and covariance lists. The 
position estimates (X and Y in Figure 2) in estimate[0] 
are set to the horizontal positions of the first measurement 
in the constant velocity segment. Then, the velocity 
estimates (VX and VY in Figure 2) are used to initialise a 
rough estimate (based on monosensor measurements) of 
trajectory velocity. Then covariance[0][0] is initialised to 
C0,0, described in      (5). 
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where  and posσ velσ are constants for the adaptation of 
the algorithm.  
We must process in turn all constant velocity segments in 
a given trajectory. If we finished processing a segment, 
we must reinitialize the estimate[0] vector and all the 
covariance[0][i] matrices. In the case of estimate[0] and 
covariance[0][0] it must be done as with the first 
measurement of the first constant velocity segment. 
For the rest of the covariance[0][i] matrices (cross 
covariances between position/velocity vector and 
previously estimated sensor biases), we must initialize 
them to zero matrices.  
For each measurement in the constant velocity segment 
we must check if it belongs to a sensor not previously 
processed for bias estimation or not. If it was not 
previously processed we must: 
• Add a new element, with zero values, to estimate 

list, which will contain the bias terms related to this 
sensor. 

• Add new elements to all covariance lists, with zero 
values, at the final position. 

• Add a new list, with only one matrix as element, to 
covariance list of lists. The contents of this matrix 
are sensor type specific (let us call them Csensor). 
They are diagonal matrices with quite big values in 
order to avoid having any impact of initialization 
over bias estimation. 

Both in the cases the measurement processed comes from 
a new sensor and not, we must process it with the 
rearranged Kalman filter we are proposing. The filtering 
steps are as follows: 
• Obtain the time since previous measurement 

filtering, to be called T. 
• Calculate position prediction matrix F, as: 
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• Predict estimates: all estimate elements remain 
constant (we assume constant biases), but the one 
related with position: 

estimate[0]=F*estimate[0]       (7) 
• Predict covariances. Those covariance elements 

related with position are the only ones which need to 
be changed. Those are the covariances in the first list 
of covariance: 

o  First the estimate[0] covariance need to be 
changed: 

TF*[0][0]*F[0][0] covariancecovariance =   (8) 

o For the rest of terms the prediction takes 
the form:  

covariance[0][j]=F*covariance[0][j]    (9) 
• Calculate the bias projection matrix Hb, dependent of 

the sensor model type, and of the measurement 
under analysis (details on it twill be provided in later 
sections). It must be pointed out that, in certain 
stages of the processing, when the bias terms have 
been corrected, we will use the data in the Kalman 
filter not including terms for this sensor and Hb will 
be an undefined matrix (and all the terms related 
with it in further steps must be negelected) 

• Define a matrix to be called Hpos of the form: 
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• Calculate the horizontal projection of the measured 
position (in stereographic plane). We will call this 
measurement xm. 

• Calculate n as the index in estimate list of the sensor 
providing the measurement, 

• Calculate the residual of the Kalman filter as: 
[ ] [ ]nHHxres bposm estimateestimate −−= 0   (11) 



• Obtain the measurement covariance, projected in the 
horizontal plane, associated to the datum. This is a 
2x2 matrix. It will be called R in next computations. 

• Calculate the residual matrix Sres as: 
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• Calculate two lists of N matrices. We will call them 
B[i], with 0<=i<N, and BT[i]. To calculate them we 
will use two different methods, depending on the 
value of i: 

o If i<n 
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o If i>=n 
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• Calculate a list of Kalman gain matrices (K[i]) for 
the corresponding estimate element. It is calculated 
as: 

-1
resS*BT[i]K[i] =        (15) 

• Calculate the filtered estimate. Using our lists, it may 
be done through a loop in which we perform 
independent updates of the estimate elements, and 
of all the terms in each row of the covariance 
structure. The filtered estimate element must be 
updated. It is calculated as: 

estimate[i]=estimate[i]+K[i]*res   (16) 

• The filtered covariance structure must be updated. 
To update each element in the row we must perform 
a new loop, with index 0<=j<N-i. The corresponding 
covariance elements must be updated as: 
covariance[i][j]=covariance[i][j]-K[i]*B[i+j]   (17) 

After processing all measurements from the multisensor 
track, we will obtain the estimate and covariance 
estimates. 
Next we will detail the use of this filter within the OTR. 
3.2 Radar track bias estimation 
SSR, PSR and Mode S radars have their track bias 
estimated at a first stage, to perform global radar bias 
estimation. Those estimators will make only use of radar 
measurements, ADS or WAM measurements will not be 
used yet.  

It should be noted that all local bias estimators are not 
estimating, when referring to the same SSR or Mode S 
virtual radars, the same values. The range bias term is 
different for each target, as it includes also the 
transponder delay, and this must be taken into account 
when the global estimates are derived. There is lack of 
observability of range bias and transponder delays terms 
separately, so the track bias estimator estimates the sum of 
both terms. 
Then, for each virtual sensor the track bias estimate will 
have states for: 
• Sum of Range Bias and Transponder delay for SSR 

and Mode S radars, or Range bias for PSR. 
• Range Gain 
• Azimuth Bias 
• Azimuth Eccentricity parameters. 
• Time stamp bias. 
Provided HR is the matrix defined in (2), and we use (i,j) 
notation to express the element in this matrix, Hb bias 
projection matrix is of the form: 
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(18) 
It contains all HR elements, but not repeating the second 
element, as we calculate the sum of those two elements. 
(VX, VY) is the velocity vector of the target in this time. 
At the beginning, it should be estimated from monosensor 
measurements. Note this matrix contained ideal values of 
range, azimuth, and height but we would use them to 
calculate the measurements. 
3.3 Radar Sensor Bias Estimation and 

correction 
Radar global bias estimation is the process in charge of 
exploiting local bias estimators from radar data to obtain 
the following data for each radar of type PSR, SSR or 
Mode S: 
• Range Bias 
• Range Gain 
• Azimuth Bias 
• Azimuth Eccentricity.  
• Time stamp bias. 
To do that, it implements a Kalman filter in which each 
local bias estimator is treated as a measurement of the bias 
terms from a group of sensors (those feeding the 
associated multisensor track), and with all global bias 
terms from all sensors in stacked in the state vector. Each 
local bias estimator comprises a different set of bias 
estimators from different sensors. The matching between 
local bias estimator and global bias estimators, and 
between them all and sensor model bias, is therefore 
critical in this system. 
Note additionally that here we do not try to estimate the 
transponder delays here, but there is a specific process to 
do so later. To do so, we have to take into account that the 
track bias estimates the sum of the transponder delay and 



the range bias for Mode S and secondary radar, and 
reinterpret the result as an estimate of the range bias with 
incremented uncertainty. This uncertainty is related with 
the lack of knowledge of transponder delay, and therefore 
all SSR and Mode S sensors range bias local bias estimate 
will have a correlated error term (different in SSR and 
Mode S modes). 
After bias estimation, biases are corrected and all 
measurements retransformed to stereographic plane. 
3.4 Radar target bias estimation and 

correction 
This process is in charge of estimating Mode S and 
conventional transponder time delay, expressed in meters. 
This is what we called a target bias estimator. To do so it 
performs an estimation similar to that of the local bias 
estimation for radars, based on PSR, SSR and Mode S 
radar data. To do so, it uses data with global biases from 
radar corrected, and uses bias model with two terms: 
• SSR transponder delay 
• Mode S transponder delay 
The filter also contains four additional states, the position 
(X,Y) and velocity (Vx,Vy) in stereographics estimates, 
and the others containing the bias estimate of each of the 
sensor. Position is initiated with the first measurement in 
each straight line, and reinitiated for each straight line, 
with a velocity given from straight line calculation 
method. All SSR sensors share the same SSR transponder 
delay, and all Mode S measurements from all sensors 
have the same Mode S transponder delay. PSR data has 
no transponder delay at all. This is taken into account in 
the Kalman filter modelling, which additionally assumes 
constant transponder delay. 
After this estimation, all SSR and Mode S radar data are 
corrected with the offset corresponding to its target (if 
available). Once again, after bias estimation, biases are 
corrected and all measurements retransformed to 
stereographic plane. 
3.5 ADS Track Bias Estimation 
ADS local bias estimation is based on the use of ADS 
position measurements and radar (PSR, SSR and Mode S) 
measurements. Radar measurements used here have their 
sensor related and target related bias terms corrected. 
Therefore, it is like, at this step, they suffered no bias, and 
the ADS bias estimator will find the necessary offsets to 
get aligned with it.  
Track bias estimation estimates, for each target, only: 
• Target Time bias 
The related Hb bias projection matrix for ADS 
measurements takes the form: 
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where (VX, VY) is the velocity vector of the target in this 
time. After some measurements are processed in the bias 
estimation Kalman filter it can be obtained from the third 
and fourth element of estimate[0].  

Radar measurements are asumed to be bias free, and so no 
Hb value needs to be defined for them. 
 
3.6 ADS Sensor Bias Estimation 
Track ADS bias estimation may suffer from a problem. If 
a given aircraft has no straight line segment, the system 
will not be able to provide time stamping bias. So we will 
calculate an average time bias for all ADS, and mix it 
with the available information from all sensors taking into 
account its relative qualities.  
3.7 ADS Target Bias Estimation and 

Correction 
For the data from a target with constant velocity segments 
it will calculate a good enough bias estimate, and so the 
corrections will be mainly based on the own local 
estimate. 
For targets with no constant velocity segments it will be 
used to correct the average performed in the global bias 
procedure. The idea is providing a value logical for the 
user as output, although the effects on bias correction will 
be negligible.     
Therefore, bias estimation estimates, for each target, bias 
terms are: 

• Target Time bias 
Those bias estimates are used to correct all ADS 
measurements, which are then retransformed to 
stereographic plane. 
3.8 WAM Track Bias Estimation 
WAM track bias estimation is based on the use of WAM 
position measurements and radar (PSR, SSR and Mode S) 
measurements. Radar measurements used here have their 
sensor related and target related bias terms corrected. 
Therefore, it is like, at this step, they suffered no bias, and 
the WAM bias estimator will find the necessary offsets to 
get aligned with it.  
This local estimator is special, as each target will contain 
only the terms related with the WAM error cells it is 
traversing, and from which there are WAM measurements 
(according to its associated WAM measurements). 
For each cell, the terms are: 
• Local to sensor X bias 
• Local to sensor Y bias 
• Time bias 
Note all cells bias related terms will contain a time bias 
estimate, although time bias is actually unique for all 
cells. 
The bias estimation terms for track bias estimation are the 
values of the biases at each cell. It should be noted that for 
a given track, it is possible not to receive a signal, in any 
of its measurements, from a given cell. There would be 
two possibilities: 
• Increase the length of the bias vector as we receive 

measurements from new cells.  
• Use a fixed-size bias vector with all cells. 



The method used in OTR is based on the first approach, 
as the number of cells may be huge. What we did was 
defining a virtual subsensor for each WAM cell, where  

Figure 4: List of estimates in sensor bias estimation 

Radar 
number 
and 
type 

Range 
noise 
(m) 

Estimated 
Range 
noise (m) 

Range 
Bias 
(m) 

Estimated 
Range 
Bias 
(m) 

Estimated 
Range 
bias 95% 
band (m) 

1-PSR  110 120.40 50 17.73 ±21.4 
2-MS 74 73.79 0 -14.4 ±29 
2-SSR  74 78.04 0 -16.71 ±33.4 
3-SSR 74 73.60 25 15.87 ±26.7 
4-SSR  74 71.27 25 -16.75 ±26.9 
5-MS 74 76.92 150 163.26 ±27.1 
5-SSR 74 72.93 150 195.01 ±38.1 
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Each time the target enters a new cell, it is as if we were 
using a new sensor. 
3.9 WAM Sensor Bias Estimation and 

Correction 
Global WAM bias estimation obtains the result from local 
bias estimators and obtains a unique time bias for the 
whole sensor by mixing all time biases, and X-Y offsets 
per cell. It is implemented with a Kalman filter in which 
each local bias estimator from WAM is assumed to be a 
measurement of the error cell X-Y terms and of the time 
offset.  

Table 1: Simulated noise and bias estimation results 

In last table we summarize noise and bias estimation 
results, for selected radars and coordinates. Having a 
same number and different types means those are different 
virtual sensors from a same real physical sensor.   
Quite often the 95% band of error in bias estimation is not 
respected due to: Therefore, the each cell, the resulting global bias terms 

are: • Approximations in the bias processing 
• Local to sensor X bias • Presence of transponder bias, whose average is 

mixed with the radar bias • Local to sensor Y bias 
But it is clear from those and other results the bias 
estimation is converging to values near the actual ones. 

In addition, there is a common bias estimate being shared 
by all cells within the sensor: 
• Time bias 5 References All those bias terms values are corrected for all WAM 
measurements, given a sensor and the cell it belongs to. 
Of course, it also demands a reprojection of the 
measurements. 
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In next figure, the radar coverage is depicted in colors, 
while white lines depict simulated aircraft trajectories. 
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