
Knowledge-Based Systems 23 (2010) 864–874
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Exchanging courses between different Intelligent Tutoring Systems: A generic
course generation authoring tool

H. Escudero a,*, R. Fuentes b

a Automatics and Computing, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain
b Mathematics and Computer Engineering, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain

a r t i c l e i n f o
Keywords:
Intelligent Tutoring System
Authoring tool
Generic
Hypermedia
Instructional design theories
* Corresponding author.
a b s t r a c t

In recent years a great effort has been made in order to create Intelligent Tutoring Systems that get close
to human teaching. Some of the handicaps of the systems already created are the impossibility of sharing
the courses between different Intelligent Tutoring Systems and the difficulty of creating them. Once the
intelligent tutoring system is created, creating a new course is an expensive job that requires the inter-
vention of many people that are expert in different areas. In this paper a generic and extensible authoring
tool to create courses for different Intelligent Tutoring Systems is presented. This authoring tool allows
the creation of courses for different types of intelligent tutoring systems. Once a course is created it
can be exported to another intelligent tutoring system, reusing the domain model that the course repre-
sents. The prototype of the authoring tool has been tested with two simple Intelligent Tutoring Systems.
1. Introduction

Intelligent Tutoring Systems (ITS) are computer based systems
that provide individualized tutoring to the students [1].

About 20 years ago, research by Prof. Benjamin Bloom and oth-
ers demonstrated that students who receive one-on-one instruc-
tion perform two standard deviations better than students in
traditional classrooms [2]. That is, the average tutored student per-
formed as well as the top 2% of those receiving classroom instruc-
tion. Furthermore, research on prototype systems indicates that
students taught by ITS generally learn faster and translate the
learning into improved performance better than classroom-trained
participants.

Providing a personal training assistant for each learner is beyond
the training budgets of most organizations. However, a virtual train-
ing assistant that captures the subject matter and the teaching
expertise of experienced trainers provides a captivating new option.
ITS research has been done for more than three decades by research-
ers in education, psychology and artificial intelligence.

The good of ITS is to provide the benefits of one-on-one instruc-
tion automatically and cost effectively. Like training simulations,
ITS enable participants to practice their skills by carrying out task
within highly interactive learning environments. However, ITS go
beyond training simulations by answering user questions and
providing individualized guidance. Unlike other computer based
training technologies, ITS assess each learner’s actions within these
interactive environments and develop a model of the knowledge,
skills and expertise. Based on the learner model, ITS tailor instruc-
tional strategies, in terms of both content and style, and provide
explanations, hints, examples, demonstrations and practice prob-
lems as needed [3].

However, ITS are still seen with scepticism due to the fact that
they have not been extensively used in real educational settings.
The main reason for this limited use is probably the fact that the task
of constructing an ITS is complex, time-consuming and involves a
large number of people including programmers, instructors and ex-
perts of a specific domain. Moreover, once constructed, an ITS for a
specific domain cannot be reused for different domains without
expending much time and effort. An approach to simplifying the
ITS construction is to develop ITS authoring tools that can be used
by a wider range of people to easily develop cost-effective ITS [4].

The EON system is a suite of domain independent tools for
authoring all aspects of a knowledge based tutor. It can be seen
as the father of the ITS authoring tools that are created nowadays.
Instead of authoring the ITS as a whole, it contains a set of tools to
author different aspects of the ITS, namely the teaching strategies,
the domain model, the student model and the learning environ-
ment [5].

In recent years several ITS authoring tools have been developed
based on the paradigm of EON. VIRTOOL-D [6] is a virtual learning
virtual environment for procedural domains. In this case, the tool is
a machine-tool process learning environment. It contains a suite of

http://dx.doi.org/10.1016/j.knosys.2010.05.011
mailto:hector.escudero@unavarra.es
mailto:rfuentes@
http://dx.doi.org/10.1016/j.knosys.2010.05.011
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

Fig. 1. Main components of an intelligent tutoring system.

865
tools to generate virtual experiences that recreate the cinematic
model of a machine. XAIDA is another tool that creates courses
for manufacturing engineering education [7], but this one is for
instructional domains. This authoring tool contains several editors
too in order to generate all the components necessary for the rep-
resentation of the course. The outline editor creates a general view
of the course. Then, the Resource Editor creates the resources that
will be presented and the Fact Editor creates the information that
will be used for questioning. Finally, built-in templates are modi-
fied using the Question Editor. TALHITS (Teaching and Learning
by Hypermedia Intelligent Tutoring Systems) is another type of
ITS. This system uses hypermedia to facilitate the authoring and
learning of people with disabilities [8].

These systems present the same problems. First, the courses
they create are not reusable by other ITS. All authoring tools are
closed systems. This is, they have their own information represen-
tation formats, and specific teaching strategies. Second, even
though the possibility of managing the teaching strategies gives
more freedom and enhances the possibilities of the authoring tool,
it can be difficult for a regular user to understand how they work.
REDEEM is an ITS authoring tool that tries to solve this problem
using a default teaching knowledge, which will be used for all
the ITS. In this way, the user only has to specify the domain model
and structure for the Shell to sequence and structure it [9].

Some systems try to decrease the amount of time needed to cre-
ate new content, using new visual tools that abstract the content
creation form programming. Murray [5] said that, after exploring
several ITS, an amount of 300 hours of work was needed to create
an hour of instruction. Bittencourt et al. [10] propose a computa-
tional model to make the development of semantic web-based
educational systems (SWBES) easier and more useful for both
developers and authors. The ASSISTment Builder [11], for example,
is a tool that allows the creation, testing and reusing of the content
of the tutor in an easy way. Using this tool, authors have proved
that the ratio of development time to instruction time can be de-
creased to 40:1. Another example is the Internet ITS Authoring tool
(IITSAT) [12]. This authoring tool is used to build tutors for military
domains. As the domain has been specified, the authoring tool can
create new tutors at an affordable cost. These tools reduce content
generation costs, limiting the domain models that the ITS will be
used for.

This paper presents a new structure for ITS authoring and an ITS
course creation authoring tool independent from the ITS that will
represent it. In this way, the courses that are created with the
authoring tool will be reusable by any ITS.

This paper is organized as follows. Section 2 presents a new
architecture for ITS. Section 3 proposes an architecture for the
authoring tool that will create courses for any ITS. Section 4 pre-
sents the prototype implemented upon the architecture presented
in Section 3. Section 5 presents two test cases using the prototype.
Finally, Section 6 discusses the main conclusions and future work.
2. Proposed ITS architecture

Even if the course creation authoring tool is only for a part of
the Intelligent Tutoring System, the creation of this authoring tool
implies a change in the structure of the whole ITS. Usually an intel-
ligent tutoring system is divided into four different components, as
shown in Fig. 1: Domain Module, Pedagogic Module, Student Mod-
el and Dialog Module [13].

� Domain Module: This contains the knowledge about the subject
to be taught. It usually is organized pedagogically to ease the
interaction with the Pedagogical Module. The knowledge repre-
sented in this module is used to determine what must be
presented to the student and as an standard to evaluate his/
her answers.
� Pedagogical Module: The different teaching strategies are repre-

sented in this module. Session control methods are imple-
mented by means of the adequate choosing and sequencing of
these strategies. It promotes the learning, designing, adjusting
and organizing of the instruction that will be presented for each
student. This module is able to decide, using the information
represented in the Domain Module and the Student Module,
which concepts must be presented in each moment, how to
present each concept, and when and how to interrupt the
student.
� Student Model: This represents the image that the system has

about the knowledge that the student has acquired during the
instruction process. In addition, it incorporates other aspects
about the behaviour and knowledge of the student that may
affect the students learning. It is used to represent and evaluate
the progress of the student acquiring the knowledge of the
domain.
� Dialog Module: This defines the interface between the system

and the user. Initially this module was not part of the architec-
ture of the ITS, but later studies have shown its relevant role as
the part of the system that communicates with the exterior.
This component translates the interventions of the system in
a representation that is legible for the user and transforms the
entries of the student to the representation of the information
that the system uses internally.

ITS contain all the components in the same tool, and depending
on the teaching strategies, the type of domain that is going to be
taught and the student evaluation capabilities, these four compo-
nents are subdivided into smaller ones. Each ITS defines its own
sub-components and the way they communicate with each other.

All the ITS are closed systems. This means that all the courses
they create can only be executed by they own tools. Normally
the tool that creates the course is comprised in the tool that repre-
sents it, and the saving format is unknown. This makes difficult to
compare the efficiency of different teaching strategies. In any case,
all tools manage static and dynamic information. The static infor-
mation is the knowledge about the subject to be taught and the ba-
sic information about the student. The dynamic information is the
progress of the student and the punctual information that the sys-
tem generates while the student is learning using the intelligent
tutoring system, and this helps the ITS to choose the best teaching
strategy for the next learning unit or exam.

The dynamic information is exclusive of each STI, as each one
implements its own teaching strategies. But, if the creation of the
domain module is correct, that information, described as static
information before, could be shared between all the different ITS.
It should be noticed that a domain model can be defined in differ-
ent ways, and all of them can be valid.

866
This system proposes a generic architecture in which the tool
that creates the course and the tool that represents it are sepa-
rated. In this way, ITS are divided in two parts: there is an author-
ing tool that creates the static information and codifies it in an
standard way (the domain model of the course to be taught and
the information about the student), so any course representing tool
can read it and use it as the domain to be taught, and there is a tool
that represents that course.

Intelligent Nursing Education Software (INES) [14] is an ITS that
uses an architecture similar to this one. In INES the core of the ITS
is separated from the exercise modules and user interfaces. It is
similar to our system because exercises can be provided in XML
format to the ITS, and different user interfaces can be added to
the system without changing the core. The main difference is that
these XML files must be adapted to the format that the core of the
ITS needs, whereas in our system this output can vary.

Cabada et al. [15] present another system that has a similar
architecture. This is an ITS for mobile systems. The tool that creates
the content can import SCORM, pdf, html or doc files into the sys-
tem, and exports the course in XML format, so the interpreter, in-
stalled in the mobile system, can reproduce it. As courses are made
with standard file formats, and it is exported in XML format, a par-
ser could be created to transform that XML file into another one.
Nevertheless, for the time being, these XML files can only be repro-
duced by the proprietary interpreter, and the authoring tool does
not include any import/export facility. Some systems go further
in the separation of the different modules of the ITS and propose
a Service Oriented Architecture (SOA) to enhance the interactivity
and accessibility of different learning resources [16].

An expert in the subject that is going to be taught would create
the course. The course would be saved in a file and then the repre-
senting tool would use the file to start the teaching sessions.

As shown in Fig. 2, there are four different characters involved
in an intelligent tutoring system:

� The expert in the subject to be taught. Each course should be
created by an expert in the subject that is going to be taught.
This person must use the course creation tool in order to create
the course, but might not be used to working with computers.
Therefore, the course creation tool must be as intuitive and easy
to use as possible.
� The pedagogical expert. This person decides which rules must

be applied for the student’s learning to be as good as possible.
Fig. 2. The general structure of the intelligent tutoring system.
� The programmer. This person codifies the rules decided by the
pedagogical expert into the course representing tool.
� The student. This person is the user of the course representing

tool.

Nowadays, for each new course, the work of the programmer,
the pedagogical expert and the expert in the subject to be taught
are needed. Usually, this raises the cost of the creation of the
new courses to an unaffordable level. With this new architecture,
only the work of the expert in the subject to be taught is required.

Another advantage of this architecture is that it allows the con-
stant recoding of the teaching strategy. In this way, in the initial
state of the development of the course representation tool, the
feedback of the student can be used to recode the teaching strat-
egy, and the same course can be used to make another test with
a different student.
3. Architecture of the generic course creation authoring tool

Different ITS use different teaching strategies. The authoring
tool must support the creation of courses from the simplest to
the more complex ones. The teaching strategy chosen for the
authoring tool is the most complex one, but it’s organization has
been made flexible enough to allow the creation of simple courses.
Instructional Design Theories study in detail knowledge represen-
tation paradigms from an educational perspective; they are
primarily concerned with prescribing optimal methods of instruc-
tion to bring about desired changes in learner knowledge and
skills. In particular, these optimal methods must specify what must
be learned [17] and some way to represent this knowledge.

Instructional design theories based on Merrill’s [18] ‘Compo-
nent Display Theory’ present facts, concepts, procedures and prin-
ciples as Basic Learning Units (BLUs). In order to establish a
pedagogical view useful for selecting and/or sequencing the con-
tent, Reigeluth [19] references four different kinds of relationships
between teaching contents of the same type: requisite relation-
ships, conceptual relationships, procedural relationships and theo-
retical or principles-based relationships. So, the BLUs include in
their representations some attributes which relate them one to
another.

Instructional Objectives (IOs) refer to the application of partic-
ular skills over BLUs. The most accepted taxonomical classifica-
tions in the psycho-educational field have been the taxonomy of
teaching objectives [2] and the taxonomy of learning objectives
[20]. The former identifies three different learning categories: cog-
nitive, affective, and psychomotor. Inside the cognitive category,
six IO have been defined: knowledge, comprehension, application,
analysis, synthesis and evaluation. Depending on the domain and
the characteristics of the various learning activities proposed by
the instructor, each BLU in the domain can be completed by adding
the skills (i.e. IOs) that must be developed in the learner.

The authoring tool will use this generic architecture or informa-
tion representation: there will be a set of BLUs which will be re-
lated. Each BLU will contain several IOs, and in each IO some
information will be displayed.

In this section the architecture of the generic authoring tool will
be presented. The system will be divided into five different mod-
ules: the ITS type specification module, the course flow editor
module, the content creation module, the evaluation module and
the output module.

The most generic definition of an authoring tool is ‘‘a system
that allows the production and creation of complex and interre-
lated multimedia objects” [21]. Usually authoring tools have
related the creation of web and multimedia content, but their
use is widening. However, one of the characteristics that appears

Fig. 3. Representation of the BLU net using a directed graph.

867
in all the definitions is that authoring tools help users that are not
experts in computer based multimedia creation applications.

As mentioned before, one of the handicaps of ITS is the non
reusability of the domain models created. As each ITS uses a differ-
ent set of rules for deciding the flow of teaching and stores the do-
main and student models in different formats, the information
sharing becomes impossible. The generic authoring tool proposed
in this article is independent of the rules and the representation
format of the ITS, and stores the information in a generic and open
format, so it can be accessed by any application.

But even if the authoring tool is generic enough to allow the cre-
ation of domain and student models for any type of ITS, it would
not be helpful if the number of persons involved in the creation
of these models is still too large. This would lead to a very high cost
in the creation of the new models, which is another of the prob-
lems that ITS are suffering nowadays. Therefore, the authoring tool
must be as simple and intuitive as possible. In this way, only an ex-
pert in the subject to be taught will be needed in order to create the
new domain model.

The independency of the domain model from the set of rules
that decide the flow of the teaching process brings some other
advantages. Firstly, it allows the comparison between different
teaching ITS and different teaching strategies. As the same domain
model can be applied to different ITS or teaching strategies, once
the results of the learning process are evaluated, differences can
be attributed to the teaching strategy. Secondly, if any of the teach-
ing strategies proves to be better than the others, only the set of
rules of the ITS that has performed worst needs to be changed,
whereas the domain model remains the same.

It should be noticed that this generic authoring tool only creates
domain and student models, and not the rules that are contained in
the pedagogic module. Research has been done to create authoring
tools that enable the creation of the whole ITS. We think that this
objective is too ambitious. Furthermore, a pedagogical expert is
needed in order to create an effective set of rules. The aim of the
generic authoring tool focuses on the creation of the different
courses once the rest of the ITS is constructed.

3.1. Specification of the tutoring system

As each ITS has different characteristics, first of all these charac-
teristics must be defined. The system must provide a user friendly
interface in order to define the characteristics of the tutor the
course will be created for. These are the characteristics that need
to be defined:

� Basic Learning Unit types. Several instructional design theories
present the concepts, procedures and principles as Basic Learn-
ing Units (BLU). Not all the ITS use the same BLUs to specify
their domains and control the flow of the BLUs.
� Relations between BLUs. Usually, the ITS have the number and

type of relations that they can manage restricted. This is
because the pedagogic module is prepared to process only some
of them. And even if two ITS contain a pedagogic module with
the same characteristic, they could have different names for
the same relation types.
� Instructional Objectives. These are the different types of capa-

bilities to achieve.
� Information types. This depends on the way that the ITS dis-

plays the information to the student. Some of them use simple
text, others use web pages created from templates or human
like avatars.

This information should be provided by the creators of the ITS
and not by the user that is creating the course. However, an easy
to understand interface should be provided. People with different
knowledge about computers work in the creation of the ITS, and
the tool should be designed so any of them can use the tutoring
system specification tool.

The definition of the characteristics of the ITS is a very impor-
tant part of the authoring tool, because the creation of the domain
model will vary depending on these characteristics.
3.2. The course flow editor

An easy to understand way of codifying a domain model is a
concept map. A definition of concept map, given by Martin [22]
is ‘‘concept maps are two-dimensional representations of cognitive
structures showing the hierarchies and the interconnections of
concepts involved in a discipline or sub-discipline”. Once com-
pleted, the concept map is a visual graphic that represents how
the creator thinks about a subject. Usually a concept map is divided
into nodes that represent concepts and links, that represent rela-
tionships (propositions) between concepts [23].

Concept maps have their origin in a learning movement called
Constructivism. Constructivism holds that prior knowledge is used
as a framework to learn new knowledge. In essence, how we think
influences how and what we learn. Concept maps can illustrate
faulty views individuals may have and help us better understand
how student may construe meanings from subject matter. Finally,
the teacher who constructs concept maps for classes is interested
in students understanding relationships between facts, not just
knowing the facts [24]. Another advantage of concept graphs is
that the knowledge bases that are expressed as concept graphs
can be validated semantically [25].

In the generic authoring tool this approach will be taken for the
creation of the domain model. The BLUs will be the nodes of the
concept map, and the relations between the BLUs the relations of
the concept map.

Therefore, the core of the course creation authoring tool should
be a tool that helps creating the BLUs and their relations visually.
Nowadays there are several tools that allow the creation of graphs
in a user friendly way. Nonetheless, special attention must be paid
to the special characteristics of this graph.

There are different types of links between the nodes. For exam-
ple, a pre-requisite relation should not be represented in the same
way as a co-requisite relation, because, even if the domain is well
created, it would not be understandable. Some graph creation tools
allow changing the colour of the links, but leaving this decision to
the user could lead to confusion, as the user could forget to change
the colour of the link. The best option would be the automatic

Fig. 4. Relations are crated one by one, and the representation of the whole graph.

868
creation of the link, which would be represented using a static col-
our and shape code (Fig. 3).

Another aspect to bear in mind is the great amount of BLUs and
links that the course will have. While the graph grows it becomes
increasingly difficult to take into account all the information pre-
sented in the graph. It would be easier to edit and visualize one
type of relation at a time. The edition of one relation each time in-
creases the difficulty of visualizing the hole domain. In order to
solve this problem, a visualization tool is suggested. The user
would create the graph editing one relation at a time, but with
an option to watch the whole graph, even if it is not editable (see
Fig. 4).
3.3. The BLU content creation

As shown in the section above, a course contains some BLUs re-
lated to each other. For each BLU, the Instructional Objectives (IO)
must be defined. Depending on the content to be taught and the
type of BLU, the IOs that form the BLU can change. Each IO contains
its own specific information, which must be represented by the
intelligent tutoring system when the system decides that it is the
content that must be shown.

Traditionally, this content has been specified in forms that can
be represented easily, as text or images. Sound and video are an-
other possibilities, but having to record the content of each IO
makes it expensive to use. Nowadays, a voice synthesizer could
be used to create the voice from raw text.

In recent years avatars have come onto the scene as good infor-
mation presenters. It seems that receiving the information from
human like avatars makes us more receptive to that information.
Initially, avatars had to be pre-rendered, and the cost of preparing
a scene played by avatars was huge. As the processing capabilities
of computers have increased, real time avatars have appeared.
There are some platforms that, given a file as an input, can create
a scene represented by avatars in real time. The CALMsystem is a
conversational agent or ‘‘chatbot” that can be integrated into an
ITS [26]. This chatbot encourages the students to discuss or reflect
their knowledge so they can be helped to develop autonomy over
their learning.

These days each intelligent tutoring system has its own infor-
mation creation and representation form. This limits the platforms
where the course can be represented. As every intelligent tutoring
system has its own information representation system, the infor-
mation generated by the authoring tool should be as generic as
possible.
3.4. The evaluation form editor

In order to decide if the student has acquired the knowledge
necessary to continue with the next lesson, the ITS must evaluate
the student. Each ITS uses different ways to evaluate the knowl-
edge of the student. Therefore, the evaluation generator must be
flexible enough to allow the creation of different ways of
evaluation.

The evaluation test could be outside the authoring tool, or even
the ITS. Object Oriented Programming System (OOPS) is a problem-
solving environment in which students can resolve Object Oriented
Programming (OOP) exercises [27]. This system uses SIETTE [28], a
web-based system assessment system where students can take
tests to check their progress in their acquirements of knowledge.

Fig. 5. ITS type menus.

869
3.5. The output language

The connection between the course creation tool and the course
representation tool will be a file. As the output of the course crea-
tion tool could be used by several representation tools, this file
must be as generic as possible. It must contain all the information
created by the user in an organized way, so that the course repre-
sentation tool that will use it can adapt it to its own representation
form. Of course, this language must be open, that is, the structure
must be public.

An XML based language is proposed for the generic authoring
tool. In this way, the information will be clearly organized and
structured. Furthermore, XML is very versatile. Creating a parser
to translate this XML file to the internal representation form of
the course representing tool should be easy.
4. Implementation of the tool

As explained above, the tool must contain a set of basic func-
tionalities that can be extended in order to fulfill the requirements
of any ITS. There are four main elements implemented for the core
of the tool:

� The extensible core.
� The ITS specification tool.
� The course flow editor.
� The evaluation form editor.

The authoring tool has been implemented in Java for several
reasons. Firstly, it is a multi-platform language. Secondly, there
are many free applications that can be used for the core. And final-
ly, creating a plug-in system is very easy in Java.
4.1. The extensible core

This is a fundamental part of the authoring tool. As explained
above, the system cannot cover all possible representation and
testing ways. As it is impossible to create editors for all the ITS that
exist (and that will exist), a plug-in system has been created. The
authoring tool has default information editors, but in case the
information representation format of an ITS is not catered for by
none of these editors, the authoring tool users can import their
own information creation editors. These editors are imported as
Java. jar files with classes that must implement some java inter-
faces already defined in the system. Three different plug-in types
have been defined for the authoring tool:

� The information creation plug-in. These plug-ins are so the
users can create the information that will be represented in
each lesson of the course.
� The test creation plug-in. These plug-ins are so the users can

create their own test.
� The save-as plug-in. The authoring tool has a specific informa-

tion saving format. As each ITS needs a specific information for-
mat to reproduce the course, this information must be
translated to another format. In this case the authoring tool
offers two options. Firstly, a parser that takes the saving file of
the authoring tool as input and transforms it into the desired
format can be created. The saving format of the authoring tool
will be public, so anyone can create a plug-in that translates
from the format of the authoring tool into the format of it’s
ITS. Secondly, users can use the internal saving structure to cre-
ate a plug-in that saves the course directly into the desired for-
mat. Once the plug-in is imported, a ‘‘Save as” option will
appear in the main menu of the authoring tool.
4.2. The ITS specification tool

As each ITS has different characteristics, the user must define
the characteristics of the ITS that the course will be created for.
The authoring tool provides a tool to specify and record several
configurations for different types of ITS. In the main application
there is a menu (Fig. 5) where the user can create a new ITS type,
edit an already existing ITS type and establish the active ITS type
that will be used to create the next course.

When the user chooses to create or edit an ITS type, a new win-
dow appears where the user can define the characteristics of the
ITS. This new window provides an easy interface in order to define
the BLU types, the Instructional Objects, the relations between the
BLUs and the way the information of the ITS course will be
represented.

Regarding the BLUs, only their name need to be defined
Fig. 6(a). For the way the course will represent the information,
the system provides two alternatives, raw text and an avatar edi-
tor. In any case, there are ITS that use different type of information
representation (like web pages, for example). For these cases, the
system allows the inclusion of a jar file that will be automatically
detected when left in a specific folder of the application. Further-
more, the user must specify the main class of the jar, so the tool
can use it. As shown in Fig. 6(d), the user must insert a name for
the information type and the path to the main class of the imple-
mentation. This class must implement two java interfaces so it
can be properly activated: (see Fig. 1)

The Info interface is the class that will contain the information
and the InfoInterface interface is the class that will provide the vi-
sual interface to insert that information.

Once the information types are defined, the user can specify the
Instructional Object types. As IOs contain the information that will
be presented, the course creator must define which will be the rep-
resentation format for the IOs of the ITS Fig. 6 c. In addition, there is
usually some information added to the IOs. This information helps
tracking the learner’s progress. The difficulty of the IO, the ex-
pected learning time or the number of times the user has seen
the IO are examples of these attributes. The more complex the
ITS, the more attributes have the IOs. As every ITS has different
attributes, the authoring tool has an attribute editor Fig. 7. There
are four basic attributes: text attribute, check box attribute, combo
attribute and list attribute. These attributes can be combined to
create more complex attributes. Once the desired attributes are
created, these can be inserted in the IOs.

Finally, the relation types between the BLUs must be defined. As
these relations could be hierarchical, the system provides a tree
where the user can include nodes just by clicking with the right
button of the mouse.

4.3. The course flow editor

As the model will be represented as a concept map, the best
way to create and represent it is a graph editor. Nowadays there
is a great variety of tools that allow the creation and manipulation

Listing 1. The two interfaces that must be implemented.

Fig. 7. The attribute editor.

Fig. 6. ITS type editing windows.

870
of graphs in an easy and visual way. InXight [29], TheBrain [30] or
ThinkMap [31] are professional tools that use graphs to visualize
different complex relations between concepts.
One of the most used graph manipulation tool written in java is
GraphViz [32]. This library allows the creation of different types of
graphs. The handicap of the library is that due to its complexity the
manipulation of the source code in order to satisfy the needs of
new applications becomes extremely difficult.

TouchGraph [33] is an alternative to GraphViz. This library al-
lows the creation of different types of graphs, but its advantage
is that taking the basic library of TouchGraph the LinkBrowser
has been created. The LinkBrowser only allows the creation of
nodes and directional links using an user friendly interface of
drag&drop. Additionally, the user can zoom in and out, rotate the
graph and move it.

On each node of the graph the user must add the content that
will be displayed in order to teach a piece of the course. When edit-
ing the properties of the nodes, besides their aspect the user can
define the type of BLU (which will vary depending on the tutor
type chosen) and its content.

Depending on the configuration of the ITS, the user will have
different link types available, each one identified by a colour. For

Fig. 8. Four different relations edited in the same model.

871
the sake of clarity, only one will be visible each time. In Fig. 8 four
different relation types have been edited in the same model. When
the user pushes one of the coloured buttons in the top of the editor,
the selected relations appear.

But, as explained above, the user must be able to see the model
as a whole, and not as a group of graphs. Showing all the relations
in a 2D graph would make the model difficult to understand. This is
the reason why a 3D graph representation tool like WilmaScope
[34] has been chosen to represent the whole domain model (see
Fig. 9).

4.4. The evaluation form editor

Most ITS must evaluate the student in order to decide if he/she
can continue and the lesson that should be learned next. The eas-
iest way to evaluate a student using a computer is a multiple
choice test. The system provides a tool to create these tests.
Fig. 9. The whole domain model in 3D.
Nevertheless, as computer technologies evolve, multimedia sys-
tems where the user has to interact with the computer in order to
pass a test are becoming more common. The authoring tool must
be able to import and use any of these multimedia systems, or at
least, define the necessary parameters so that the representation
system can decide if the student has passed or failed the test,
and record what type of mistakes he/she has made in order to cre-
ate appropriate learning strategies for future lessons.
4.5. Saving and loading the course

As previously explained, the courses will be recorded in XML
format. The specification of the language will be accessible for
everybody, so anyone can create a plug-in to record the informa-
tion in a format that the course representation tool can under-
stand. These plug-ins can be imported into the authoring tool
and will be used in a ‘‘Save as” way. When the user wants to record
the information for the course representation tool, first the course
will be recorded in the XML language of the authoring tool, and
then converted into the format of the course representation tool
using the plug-in.
5. Two simple test cases: a simple online course and a course for
an hypermedia system

In this chapter the first tests of the implementation of the tool
will be explained. First, the authoring tool will be used to create
the simplest ITS, an online course. In this example each BLU will
be a web page. Then, the authoring tool will be used to create an
Adaptive Hypermedia System. The files generated by the authoring
tool can be seen in http://www.unavarra.es/personal/HectorEscu-
dero/english/.
5.1. Creating an online e-learning course

There are two steps to follow to create a course, definition of the
characteristics of the ITS and the creation of the course itself.

http://www.unavarra.es/personal/HectorEscudero/english/
http://www.unavarra.es/personal/HectorEscudero/english/

Fig. 10. Adding a plug-in into the system

872
5.1.1. Definition of the characteristics of the ITS
The first step is to think of the characteristics that the final

course will have. As it will be an online course, it will be just a
set of web pages. The relations between the pages are implicitly
defined in the html code, as it is the way to jump from one page
to another. This way, each web page can be seen as a BLU. The con-
tent of the BLU must be created in HTML code. The information
creation tools that the authoring tool has by default cannot create
HTML code, so a tool to create web pages must be imported into
the tool.

Therefore, in the ITS definition tool, it must be specified that
there is only one type of BLU, and that there is no explicit relation.
For the information of each page a plug-in must be created. Ekit is a
free source Java HTML editor application. It cannot be imported
into the authoring tool as it is. As explained above, it must imple-
ment two interfaces. The main class of the Ekit application has
been modified to implement the InfoInterface java interface (pro-
vided by the authoring tool). This way, the Ekit tool can be
launched from the authoring tool. Then, when clicking the ‘‘Save”
button of the Ekit tool, the saving class has been adapted so it
implements the Info Java interface, and it returns the information
in an appropriate format.

In Fig. 10(a), the importation of the Ekit plug-in into the system
is shown. A name for the information type and the path to the class
that has implemented the InfoInterface (com.hexidec.ekit.Ekit in
this case) are required. Once the plug-in has been imported into
the system, the user can specify the information of a BLU using that
information type. In the editing options of the BLU a button will
appear with the name of the information type, and when you click
that button the Ekit HTML editing tool appears (Fig. 10(b)).

Finally, as the result of the course must be a set of web pages, in
other words, some HTML files, a converter must be imported into
the system. This translator takes the generic saving format of the
authoring tool and creates the HTML files. Each BLU contains HTML
code to be shown. Therefore, the translator has to create one file
containing the HTML code for each BLU.
Fig. 11. A typical structure of information space in an adaptive hypermedia system.
There is a relation between concepts (circles in the knowledge space) and HTML
pages (rectangles in the hyperspace).
5.1.2. The creation of the course
Once the ITS characteristics have been defined, the course can

be created. Each node in the graph will be an HTML page, which
will be created with the Ekit editor. In this case there will be no
relation between the nodes, as all the relations between pages
are embedded in the HTML code.
5.1.3. Saving and loading the course
The output of the course must be a set of HTML files. By default

the authoring tool saves the course in a generic format, but for this
case a ‘‘Save as” like plug-in has been imported. This plug-in cre-
ates a file for each node of the graph (BLU) and records in that file
the information created with the Ekit editor.
5.2. Creating a course for a hypermedia system

Bruselovsky defines Adaptive Hypermedia Systems (AHS) as
systems that build model of the goals, preferences and knowledge
of each individual user, and use this model throughout the interac-
tion with the user, in order to adapt to the needs of that user [35].
The information structure of a typical Adaptive Hypermedia Sys-
tem can be considered as two interconnected networks of ‘‘space-
s”: a network of concepts (knowledge space) and a network of
hypertext pages with educational material (traditional hypertext)
[36] (Fig. 11).

As noted above, there are two steps to follow to create a course,
definition of the characteristics of the ITS and the creation of the
course itself.
5.2.1. Define the characteristics of the ITS
In AHSs there are two spaces, a network of concepts and a net-

work of hypertext pages. For the hypertext pages, there is no need
to specify the relations between them, as they are on the pages as

Fig. 12. An example of the configuration of an Adaptive Hypermedia System.

873
hyperlinks. But there can be relations between different concepts
and between the concepts and the hypertext pages.

In Fig. 12 the tutor configuration window is shown. The (a) sub-
figure shows the BLU configuration window. As there will be two
different types of nodes in the course, concepts and hypertext
pages, two different BLU types have been defined, Concept and
Page. The (b) sub-figure shows the different types of relations.
Relations can be added hierarchically or all of them on the same le-
vel. For this example, four different types of relations will be cre-
ated, two for the relations between concepts and another two for
the relations between concepts and hypertext pages.

The content of each BLU will be a web page. The plug-in in-
serted into the system to enable the creation of web pages for
the e-learning ITS can be reused for that purpose. But the output
will not be just a set of HTML files. In addition to the files, the rela-
tions between concepts and the web pages must be codified. This
means that another translator must created and imported into
the system.
5.2.2. The creation of the course
Once the ITS characteristics have been defined, the course can

be created. Each node will contain the information that will be rep-
resented to the user (XHTML page created with Ekit), and some
attributes that the AHA! ITS needs in order to control the flow of
the course. There are two types of relations in this course. The rela-
tions embedded in the XHTML code as hyperlinks, and the rela-
tions between the nodes (BLUs) that represent concepts of the
course. Each node will contain an XHTML page.
5.2.3. Saving and loading the course
There are several files in the output of an AHA! course. First

there is a set of XHTML files that will be used to represent the
information that the student has to learn. Second, there are two
configuration files that record the information of the relations be-
tween the BLUs and their attributes. This information is used to de-
cide when has the student learnt enough to go onto the next step.
By default the authoring tool saves the course in a generic format,
but for this case a ‘‘Save as” like plug-in has been imported. For the
XHTML files, this plug-in creates a file for each node of the graph
(BLU) and records into that file the information created with the
Ekit editor. Then two more files are created. A .gaf file that records
the graphical information of the concepts of the course, and an .aha
file, that records the information about the attributes of the BLUs
and their relations.
6. Conclusion and future work

In this article an architecture for a generic authoring tool that
creates courses for intelligent tutoring system has been presented.
Furthermore, the first steps of the implementation of the core tool
have been shown. We believe that once it is finished most of the
intelligent tutoring system that exist nowadays could make use
of this tool in order to share the knowledge they create. It has been
proven, that with the technologies that exist nowadays, such a
generic system can be built. Java offers the opportunity to import
any type of plugging into the system in a easy way. The challenge
has been to define a core that can support a set of rules of the most
complex and the most simple ITS, without loosing usability.

Nevertheless, there is a set of ITS that might get out of the range
of the authoring tool. These are the simulation ITS. These tools
build the ITS upon 3D machines, and they usually do not have a
set of teaching rules. All that the learner must do is to practice until
he/she has reached a certain amount of familiarity with the
system.

The next steps will be to complete the core of the authoring tool
and to test it in different scenarios. Once the two basic tests men-
tioned above have been made, a more ambitious test is foreseen.
The authoring tool will be used to create courses for the IRIS intel-
ligent tutoring system [37]. Furthermore, the XML output language
will be enhanced, probably using ontologies, so we can make the
most of the knowledge that the content creators produce.
References

[1] S.D. Schoksey, Developing an Affordable Authoring Tool for Intelligent Tutoring
Systems, Master’s Thesis, Worcester Polytechnic Institute, 2004.

[2] B. Bloom, M. Engelhart, E. Murst, W. Hill, D. Drathwohl, Taxonomy of
Educational Objectives: Handbook I, Cognitive Domain, Longman, 1956.

[3] J. Ong, S. Ramachandran, Intelligent tutoring systems: using ai to improve
training performance and roi, Networker Newsletter 19 (6) (2003).

[4] M. Moundridou, M. Virvou, Wear: a web-based authoring tool for building
intelligent tutoring systems, in: Proceedings of the 2nd Helenic Conference on
AI, Companion volume, Thessaloniki, Greece, 2002, pp. 203–214.

[5] T. Murray, S. Blessing, S. Ainsworth, Authoring Tools for Advanced Technology
Learning Environments. Towards Cost-effective Adaptive, Interactive and
Intelligent Educational Software, Kluwer Academic Publishers, 2003.

[6] A. Lozano, L. Matey, M. Urretavizcaya, B. Ferrero, I.F. de Castro, Virtool-d:
entorno virtual educativo para aprendizaje en dominios procedimentales, in:
Proceedings of the SIIE 2003, International Symposium in Education
Computing, 2003.

[7] S. jen Hsieh, P.Y. Hsieh, Intelligent tutoring system authoring tool for
manufacturing engineering education, International Journal of Engineering
Education 17 (6) (2001) 569–579.

874
[8] S. Talhi, M.D. an Salima Ouadfel, S. Zidar, Authoring intelligent tutoring
systems for disabled learners, in: Proceedings of the International Conference
on Information and Communication Technology & Accessibility, 2007.

[9] S. Ainsworth, B. Williams, D. Wood, Using redeem its authoring environment
in naval training, in: Proceedings of the IEEE International Conference on
Advanced Learning Technologies, 2001, pp. 189–192.

[10] I.I. Bittencourt, E. Costa, M. Silva, E. Soares, A computational model for
developing semantic web-based educational systems, Knowledge Based
Systems 22 (4) (2009) 302–315.

[11] L. Razzaq, J. Patvarczki, S.F. Almeida, M. Vartak, M. Feng, N.T. Heffernan, K.R.
Koedinger, The assistment builder: supporting the life cycle of tutoring system
content creation, IEEE Transactions on Learning Technologies 2 (2) (2009)
157–166.

[12] D. Stottler, D. Fu, S. Ramachandran, T. Jackson, Applying a generic intelligent
tutoring system (its) authoring tool to specific military domains, in: The
Interservice/Industry Training, Simulation & Education Conference, 2001.

[13] E. Wenger, Artificial Intelligence and Tutoring Systems, Morgan Kaufman
Publishers Inc., San Francisco, CA, USA, 1987.

[14] M. Hospers, E. Kroezen, A. Nijholt, R. op den Akker, D. Heylen, Developing a
generic agent-based intelligent tutoring system (pdf), in: Proceedings of the
3rd IEEE International Conference on Advanced Learning Technologies, 2003,
p. 443.

[15] R.Z. Cabada, M.L.B. Estrada, E.U. Barrientos, M.O. Velásquez, C.A.R. García,
Multiple intelligence tutoring systems for mobile learners, in: ICALT ’08:
Proceedings of the 2008 Eighth IEEE International Conference on Advanced
Learning Technologies, IEEE Computer Society, Washington, DC, USA, 2008, pp.
652–653.

[16] C. Fang Fang, L. Chien Sing, Collaborative learning using service-oriented
architecture: a framework design, Knowledge Based Systems 22 (4) (2009)
271–274.

[17] J. Scandura, Instructional-Design Theories and Models: An overview of their
current status, Lawrence Erlbaum Associates, 1983 (Chapter: Instructional
Strategies Based on the Structural Learning Theory, pp. 213–246).

[18] M. Merrill, Instructional-Design Theories and Models: an overview of their
current status, Lawrence Erlbaum Associated, 1983 (Chapter: Component
Display Theory, pp. 279–333).

[19] C.M. Reigeluth, M.D. Merrill, C.V. Bunderson, The structure of subject matter
content and its instructional design implications, Instructional Science 7
(1978) 107–126.
[20] R.M. Gagné, L.J. Briggs, W.W. Wager, Principles of Instructional Design, Holt,
Rinehart and Winston, 1988.

[21] D.C. Bulterman, L. Hardman, Multimedia authoring tools: state of the art and
research challenges, LNCS 1000 (1995) 1–17.

[22] D.J. Martin, The name assigned to the document by the author. this field may
also contain sub-titles, series names, and report numbers.concept mapping as
an aid to lesson planning: a longitudinal study, Journal of Elementary Science
Education 6 (2) (1994) 11–30.

[23] J. Lanzing, The concept mapping homepage, 1997, <http://users.edte.
utwente.nl/lanzing/cm_home.htm>.

[24] U. of Tennessee at Chattanooga, Concept mapping and curriculum design,
2002, <http://www.utc.edu/Administration/WalkerTeachingResourceCenter/
FacultyDevelopment/ConceptMapping/>.

[25] J. Dibie-Barthélemy, O. Haemmerlé, E. Salvat, A semantic validation of
conceptual graphs, Knowledge Based Systems 19 (7) (2006) 498–510.

[26] A. Kerly, R. Ellis, S. Bull, Calmsystem: a conversational agent for learner
modelling, Knowledge Based Systems 21 (3) (2008) 238–246.

[27] J. Gálvez, E. Guzmán, R. Conejo, A blended e-learning experience in a course of
object oriented programming fundamentals, Knowledge Based Systems 22 (4)
(2009) 279–286.

[28] R. Conejo, E. Guzmán, E. Millán, M. Trella, J.L. Pérez-De-La-Cruz, A. Rı́os, Siette:
a web-based tool for adaptive testing, International Journal of Artificial
Intelligence on Ediucation 14 (1) (2004) 29–61.

[29] S. Inxight, Inxight, August 2005, <http://www.inxight.com/>.
[30] T.C. TheBrain, Thebrain, August 2005, <http://www.thebrain.com/>.
[31] I. Thinkmap, Thinkmap, August 2005, <http://www.thinkmap.com/>.
[32] E.R. Gansner, S.C. North, An open graph visualization system and its

applications to software engineering, Software—Practice and Experience 30
(11) (2000) 1203–1233.

[33] L. TouchGraph, Touchgraph, 2005, <http://touchgraph.sourceforge.net/>.
[34] T. Dwyer, Wilmascope, 2007, <http://wilma.sourceforge.net>.
[35] P. Brusilovsky, Methods and techniques of adaptive hypermedia, User

Modeling and User-Adapted Interaction 4 (1) (1996) 1–19.
[36] P. Brusilovsky, Developing Adaptive Educational Hypermedia Systems, From

Design models to Authoring Tools, Kluwer Academic Publishers, 2003 (Chapter
13).

[37] A. Arruarte, I. Fernandez-Castro, B. Ferrero, J. Greer, The iris shell, how to build
itss from pedagogical and design requisites, International Journal of Artificial
Intelligence in Education (8) (1997) 341–381.

http://users.edte.utwente.nl/lanzing/cm_home.htm
http://users.edte.utwente.nl/lanzing/cm_home.htm
http://www.utc.edu/Administration/WalkerTeachingResourceCenter/FacultyDevelopment/ConceptMapping/
http://www.utc.edu/Administration/WalkerTeachingResourceCenter/FacultyDevelopment/ConceptMapping/
http://www.inxight.com/
http://www.thebrain.com/
http://www.thinkmap.com/
http://touchgraph.sourceforge.net/
http://wilma.sourceforge.net

	Exchanging courses between different Intelligent Tutoring Systems: A generic course generation authoring tool
	Introduction
	Proposed ITS architecture
	Architecture of the generic course creation authoring tool
	Specification of the tutoring system
	The course flow editor
	The BLU content creation
	The evaluation form editor
	The output language

	Implementation of the tool
	The extensible core
	The ITS specification tool
	The course flow editor
	The evaluation form editor
	Saving and loading the course

	Two simple test cases: a simple online course and a course for an hypermedia system
	Creating an online e-learning course
	Definition of the characteristics of the ITS
	The creation of the course
	Saving and loading the course

	Creating a course for a hypermedia system
	Define the characteristics of the ITS
	The creation of the course
	Saving and loading the course

	Conclusion and future work
	References

