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h i g h l i g h t s

� Financial risk associated with over or underproduction of electricity is studied.
� A two-stage stochastic model that considers parameter uncertainties is developed.
� The model was applied to a real case to meet projected electricity demand of a fleet of generating stations.
� Incorporation of financial risk resulted in an increase in electricity cost.
� The selection of technologies was the same as that obtained from a deterministic model.
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a b s t r a c t

This paper proposes a new methodology to include financial risk management in the framework of
two-stage stochastic programming for energy planning under uncertainties in demand and fuel price.
A deterministic mixed integer linear programming formulation is extended to a two-stage stochastic
programming model in order to take into account random parameters that have discrete and finite prob-
abilistic distributions. This was applied to a case study focusing on planning the capacity supply to meet
the projected electricity demand for the fleet of electricity generation stations owned and operated by
Ontario Power Generation (OPG). The objective of the proposed mathematical model is to minimize cost
subject to environmental constraints. The case study is investigated by considering only existing technol-
ogies and also by considering the integration of new technologies that help achieve stricter carbon
reduction requirements.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models that incorporate financial risk manage-
ment enable decision makers to account for uncertainty in the eval-
uation and comparison of alternatives. The formulation helps the
decision maker to maximize the expected profit and at the same
time minimize the financial risk at every profit level. Stochastic
programming is a framework for modeling optimization problems
that involve uncertainty. The most widely applied stochastic
programming models are two-stage linear programs. In two-stage
programming, uncertainty is modeled through a finite number of
independent scenarios [1]. Scenarios are formed by random

samples taken from the probability distribution of the uncertain
parameters as explained by Barbaro and Bagaiewicz [2]. Typical
uncertain parameters include prices of raw materials, market
demands, process parameters, rate of interest, etc. Recourse is the
ability to take corrective action after a random event has taken
place [3]. In the planning stage, some decisions are taken before
random or uncertain events are known. The remaining decisions
are taken only after the uncertain data become known.

Stochastic programming started with several methods to deal
with uncertainties such as chance-constrained optimization [4],
fuzzy programming [5,6] and the design flexibility method [7].
Some references on two-stage stochastic programming include
books by Infanger [8], Kall and Wallace [9], Marti and Kall [10],
Uryasev and Pardalos [11], Verweij et al. [12], and Neise [13].
Gothe-Lundgren and Persson [14] discussed a production and
scheduling problem focusing on planning and scheduling to select
the mode of operation to satisfy the demand while minimizing
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production cost. Recently developed stochastic models included
uncertainty and financial risk expanded to the effect of pricing
[15–17]. Tolis and Rentizelas [18] implemented a stochastic pro-
gramming algorithm without recourse to assess the impact of elec-
tricity and CO2 allowance prices in planning expansions in the
power sector under several uncertainties. Koltsaklis et al. [19] used
mixed integer programming to determine the optimal planning of
a power generation system, which included technology and fuel
selection and plant allocation to meet required demand while sat-
isfying emission constraints. They investigated the influence of CO2

emission price as well as other parameters on their results using
sensitivity analyses. Zhu et al. used a hybrid mathematical model
incorporating mixed integer programming for the optimal plan-
ning of regional municipal energy systems [20,21].

Economic needs and the ongoing trend of liberalization of the
electricity markets have stimulated the interest of power utilities
players to develop operating models and the corresponding math-
ematical optimization techniques that effectively address the issue
of generation and trading of electric/electrical power under uncer-
tainty [22,23]. Eichhorn and Romisch [24] developed a mean-risk
optimization model that maximizes revenue and minimizes finan-
cial risk. The variables that revealed the stochastic behavior in the
model via their uncertainty include electricity demand, and
current and future prices. Azaron et al. proposed an approach for
designing supply chains considering uncertainties within it [25].
The multi-objective stochastic program involved minimizing both
cost and financial risk. Demands, supplies, and prices are the main
variables that imposed uncertainty in the model. Stochastic pro-
gramming has been used extensively in mitigating financial risks
and the effect of uncertainties in supply chain design problems
[26–29]. It has also been used in refinery operations planning tak-
ing into account uncertain demand under the consideration of the
cost of unsatisfied demand and overproduction scenarios [30,31].

Deregulated energy markets and the emergence of centralized
physical markets in electric power run by independent system
operator organizations have resulted in complexities pertaining
to managing market risks in both operations and financial aspects
[32]. The unit commitment problem deals with the short-term
schedule of thermal units in order to supply the electricity demand
in an efficient manner. In this type of model, the main decision
variables are generators start-ups and shutdowns [33]. In other
words, the problem concerns how to most economically schedule
the generating units considering the unit economics, physical con-
straints and incremental transmission losses such that the opera-
tor’s total commitment to deliver power is met [34].

In classical investment portfolio theory, optimizing the
expected return for a specified level of risk is a well-known prob-
lem as optimized in the seminal Nobel Prize-winning work of
Markowitz [35]. Three dimensions are addressed in this problem:
(1) the expected return (or profit and loss P&L) on each instrument
in the portfolio; (2) the risk associated with that profit as measured
by the variance in the expected profit by Markowitz’s mean vari-
ance (MV) model or by other alternate measures of risk, such as
value at risk (VaR) or conditional value at risk (CVaR); and (3)
the quantity of each instrument held. A measure of risk that goes
beyond the information revealed by VaR is the expected value of
the losses that exceed VaR, thus termed as CVaR [36]. The CVaR
mitigates the shortcomings of VaR while possessing the same
meaning [37]. Recently, mean-risk models have attracted attention
in stochastic programming [38]. Bagajewicz has shown that a solu-
tion that minimizes financial risk at cost minimization target also
minimizes the expected value of cost of power generation [39].
Gomez-Villalva and Ramos extended a deterministic optimization
model into a two-stage stochastic program to account for risk
resulting from energy price uncertainty [40].

If improvements in an existing chemical process are not suffi-
cient to meet business needs, then new technologies can be consid-
ered. However, the application of a new technology is always
perceived as a potential threat. One of the approaches that help
alleviate the risk of investment is minimizing the associated finan-
cial risk. Based on an extensive review of the literature, there are
virtually no studies that incorporate financial risk management
within the context of the well-known problem of electric power
planning. This paper proposes a new methodology to include
financial risk management, which is incorporated by minimizing
the CVaR, in the framework of two-stage stochastic programming
for energy planning under uncertainties in demands and fuel price.
This presents a sophisticated decision making tool to help support
better informed investment decisions.

2. Methodology

This paper introduces a new systematic method for screening,
identifying, and evaluating technology integration options, which
aim at improving the cost-efficiency of a continuous chemical pro-
cess. The method is organized in four steps (Fig. 1): (1) business
case analysis, (2) process improvement without new technologies,
(3) process improvement with the incorporation of new technolo-
gies, and (4) financial risk management. The first three steps were
covered in a prior paper Ahmed et al. [42]. In this paper the fourth
step is described in detail and is demonstrated using the same case
study. In the previous work, the technologies used in the case
study were identified and the feasibility of their integration into

Fig. 1. Summary of steps in the proposed methodology.
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the existing process was investigated within a deterministic
optimization framework (Appendix A).

The major component of the proposed methodology that
influences business decision is financial risk identification and
management. The risk is considered for both scenarios where only
existing technologies are considered and where new technologies
are incorporated. Risk identification involves identifying and cate-
gorizing financial risks that could affect the improvement process.
The financial risk costs for the alternatives are estimated at various
penalty scenarios. The objective is not necessarily to minimize the
risks but to evaluate them at various scenarios, so that the decision
can be made about capital investment from among many different
alternatives. In order to minimize cost of electricity and minimize
financial risk at the same time a mathematical formulation, which
is called mean-risk model, is introduced. The mean-risk model
aims at minimizing the weighted sum of two competing objectives.
As weighting factor increases the financial risk management
becomes more important while cost minimization turns less
important. However, it does not necessarily indicate that the objec-
tive function value changes as the weighting factor does.

Sensitivity analysis is also used to assist in evaluating individual
risks. It is important to identify the best strategy for each risk then
initiate specific actions to implement that strategy. Once there is a
clear understanding of risks and their magnitude and options for
response, a mitigation strategy could then be introduced. Although
mitigation steps are costly and time consuming, they are still pref-
erable to going forward with the unmitigated risk. A problem
based on Ontario Power Generation (OPG) energy planning with
CO2 emission considerations is selected as the case study to apply
the proposed methodology.

3. Case study

The proposed methodology was tested on a case study based on
the electricity sub-sector in Ontario described by Elkamel et al.
[41]. The case study was described in detail in a prior work [42].
It focuses on planning the capacity supply to meet the projected
electricity demand for the fleet of electric generating stations
owned and operated by OPG with a goal to minimize total annual-
ized costs while satisfying CO2 emission constraints. Approxi-
mately 70% of Ontario’s electricity supply is provided by OPG. In
this case study approximately 28.5% of the generation capacity is
generated from fossil fuel combustion plants, and the remaining
amount is provided by hydroelectric (27%), nuclear energy (44%),
and renewable energy (0.5%) based plants. In 2002, OPG emitted
approximately 36.7 million metric tonnes of CO2 mainly from
coal-fired power plants while generating about 115.8 TW h of
electricity with total in-service capacity of 22,211 MW. The base
load demand was considered constant throughout the year at the
nominal level of 13,675 MW [36]. OPG operates approximately
79 electric generating stations which include five coal fired plants,
one natural gas generating facility, three nuclear generating plants,
sixty-nine hydroelectric generating stations and one small wind
turbine facility.

The Kyoto Protocol, developed by the United Nations Frame-
work Convention on Climate Change (UNFCC), required that Can-
ada reduce its greenhouse gas emissions to 26 million metric
tonnes in 2002, which approximately requires 20% reduction of
the amount of CO2 emitted then. Moreover, significantly higher
emission constraints were set over the past years, and currently
approximately a 60% CO2 reduction requirement is imposed. Such
high CO2 reduction requirements can only be achieved through the
implementation of new technologies. Two technologies were
considered, which are natural gas combined cycle and integrated
gasification combined cycle with and without carbon capture.

Two options, namely fuel balancing and fuel switching, are used
for reducing CO2 emissions by a certain target. Fuel balancing is
the optimal adjustment of the electricity generation of different
power plants, and fuel switching involves switching fossil fuel
plants from using carbon-intensive fuel (i.e. coal) to less carbon
intensive fuel (i.e. natural gas). In this study it is assumed that all
of the proposed technologies can operate at full capacity. If the
selection or operation of any of the proposed technologies conflict
governmental preferences or technological advances, then it will
be required for the case study to be resolved.

The results from the deterministic model have shown that
achieving the CO2 emission constraints while minimizing costs
affects the configuration of the OPG fleet. Considering only existing
technologies the maximum achievable CO2 percentage reduction
was 40%. However, with the implementation of new technologies
higher than 60% reduction in CO2 was achieved at base caseload
demand. At 20% CO2 reduction, which is the emission constraint
defined in the case study, the cost of electricity with and without
the implementation of new technologies was $1.40B/year and
$2.11B/year, respectively. The cost of electricity generation form
the results of Elkamel et al. [41] at 20% CO2 reduction target was
$2.95B/year. The considerably lower cost figures that were
obtained from the deterministic model in comparison with
Elkamel et al. [41] results were due to the unincorporated financial
risk and uncertainties.

4. Mathematical model

The mathematical deterministic model that was presented in a
prior work [42], and which is summarized in Appendix A of this
paper is modified and the formulation of the two-stage stochastic
model is presented in detail. The planning problem is characterized
by two essential features, which are the uncertainty in the case
parameter and the sequence of decisions. Capital investment of
various kinds of power plants are decided at the planning stage
before the uncertainty is revealed, whereas operating cost and pen-
alty cost are made only after the uncertain parameters become
known. The first class of decisions is called first stage decisions.
The decisions made after the uncertainty is unveiled are called
second stage or recourse decisions.

Financial risk, Risk(x, a), associated with the energy planning
case study, is defined as the probability of not meeting a certain
target cost minimization level referred to as a as shown in the fol-
lowing equation. The CVaR value is a measure of risk and is defined
as the expected cost when the probability that the cost exceeds a is
1�b (Eq. (2)).

Riskðx;aÞ ¼ P½CostðxÞ > a� ð1Þ

CVaR ¼ aþ 1
1� b

X

s

ps gs ð2Þ

With respect to a specified probability level b, a is the lowest
amount such that with probability b the cost will not exceed a,
and CVaR is the conditional expectation of cost above the amount
a. Typically b is pre-selected as 0.95 or 0.99, and in this study the
value 0.95 is chosen. In order to minimize the cost of electricity
generation and financial risk simultaneously a mathematical for-
mulation a mean-risk model is used (Eq. (3)). Bagajewicz has
shown that a solution that minimizes financial risk at a cost mini-
mization target also minimizes the expected value of cost of power
generation [34].

minðCost þ k � RiskÞ ð3Þ

where Cost denotes the expected value of cost, and k is a weighting
factor. The mean-risk model aims at minimizing the weighted sum
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of two competing objectives. Power plants are divided into the fol-
lowing types: fossil fuel, renewable and nuclear, hydroelectric and
wind, and new fossil fuel plants with and without CO2 capture,
which are denoted as f, rn, p and pc, respectively, in the model
formulation.

4.1. Objective function

The objective function (Eq. (4)) consists of fixed cost (FixC),
expected cost (ExpC) and financial risk cost (CVaR). The FixC con-
sists of the following: capital investment cost for all power plants
and retrofit cost for fossil fuel plants. Furthermore, electricity gen-
eration penalty cost (Eq. (5)) and financial risk cost (Eq. (7)) need to
be added to obtain an integrated objective function. The stochastic
model is modified to also include new technologies. The fixed cost
(FixC) is adjusted to include the following: capital investment cost
for all power plants, retrofit cost for fossil fuel plant, capital cost of
new technology power plants, capture cost, and sequestration cost.
The operating cost is also adjusted to incorporate new
technologies.

Min Tot ¼ FixCðCapital Cost þ Retrofit CostÞ þ ExpC þ kCvaR ð4Þ

ExpC ¼
X

s

ps OpCs þ
X

s

psðcþzþs þ c�z�s Þ ð5Þ

OpCs ¼
X

f ;j

ðOf þ Prj;s HRf ÞEf þ
X

r;n

Om Ern þ
X

p;j

ðOp

þ Prj;s HRpÞEp þ
X

new

ðOnew þ Prj;s HRnewÞEnew ð6Þ

CVaR ¼ aþ 1
1� b

X

s

ps gs ð7Þ

where the first two terms are FixC first stage decision cost and ExpC
is the second stage cost corresponding to scenario s, which has
occurrence probability ps, s = 1,. . .,NS. The first stage decision vari-
ables are binary variables and continuous variables. The binary vari-
ables are used to determine capital investment cost, and the
continuous variables are the electricity generation amount for fossil
fuel plants, renewable plants and new fossil fuel plants. The vari-
ables zþs and z�s are recourse variables for the electricity generation
amount overproduced and underproduced, respectively, compared
to stochastic demand.

4.2. Model constraints

The minimization of the objective functions represented above
is subjected to the following constraints. The model constraints are
divided into deterministic, stochastic and financial risk.

4.2.1. Financial risk constraint

gs P FixC þ OpCs þ cþzþs þ c�z�s � a ð8Þ

For stochastic parts, model constraints deal with uncertain
parameters, such as raw material cost and demand corresponding
to different scenarios. The aim of the inequality is to choose the
first stage decision in an optimal way without anticipation of
future outcomes of uncertainties.

4.2.2. Energy balance/demand satisfaction
The total electricity generation (TotE) must be equal to or

greater than the desired electricity demand, where Demand and
Prj,s are stochastic parameters for electricity demand and raw
material cost for coal and natural gas corresponding to scenario s.

Demands ¼ TotE� zþs þ z�s ð9Þ

zþs P TotE� Demands ð10Þ

zþs P 0 ð11Þ

z�s P Demands � TotE ð12Þ

z�s P 0 ð13Þ

The other stochastic model constraints such as capacity, carbon
emission, fuel selection and plant shutdown constraints are the
same as those of the deterministic model (Appendix A).

5. Results and discussion

In the cost analysis, TotCost is equal to the summation of FixC and
ExpC. When k equals zero, the multi-objective model reduces to a
two stage stochastic model without risk management. On the other
hand, when k approaches infinity, the mean risk model only consid-
ers risk management, and the total cost minimization is disregarded.
The total cost of electricity generation includes capital investment,
operational cost and penalty cost for power under-production/
over-production. The impact of various penalty values of over and
underproduction on the total cost of electricity and financial risk
cost was investigated. Two scenarios were considered, where in
the first scenario the penalty for excessive generated power (C+)
was taken as $40/MW h, and the penalty for the shortage of power
(C�) was also taken as $40/MW h. For the second the penalty values
were C+ = $40/MW h and C� = $400/MW h.

In all the scenarios investigated when the value of k increases,
the value of total cost increases and the value of financial risk
decreases. Through the results it can be observed that the objective
function value does not significantly change for all changing
weighting factors. A slight difference occurs at certain effective
points, which is in agreement with Schultz and Tiedemann’s [38]
conclusions and results. The results shown are for the case of 6%
CO2 reduction requirement and without the implementation of
new technologies. It can be observed in Fig. 2 that for the second
scenario the effective weighting factor is 0.6 and the total cost of
electricity production is $3.27B/year, which is 65% higher than
the cost of electricity without risk consideration ($1.98B/year).
For the first scenario the effective weighting factor and the total
cost of electricity production were 0.5 and $2.27B/year, respec-
tively. In the second scenario the total cost and financial risk cost
are higher because of the higher penalty values. The total and
financial risk costs per year increase with an increase in fuel price.

Fig. 2. Total and financial risk costs obtained at various penalty scenarios at 6% CO2

reduction target using existing technologies.
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A sensitivity analysis was conducted were the fuel prices for
coal and natural gas were increased by 10%, 50% and 100%. Corre-
spondingly, the total and financial risk costs increased by 1.5%,
3.4% and 6.9%, respectively (Fig. 3). As observed the sensitivity of
the objective function value to changes in the fuel price is not
considerably high. However, the effect of the fuel prices on the
selection of the power generation facilities is significant. For exam-
ple, high fuel prices will decrease the production capacity of
natural gas based plants and will comparatively increase produc-
tion from nuclear and coal based power plants.

The financial risk associated with the incorporation of new
technologies was investigated. The results for the case of penalty
costs of C+ = $40/MW h and C� = $400/MW h are shown in Fig. 4.
The result exhibit similar trends as those observed for the cases
investigated with existing technologies only, where the total cost
increases and financial risk cost decreases as the weighting factor
is increased. The total cost of electricity was determined to be
$2.33B/year, which is 46% higher than the cost of electricity with
new technologies but without risk consideration ($1.41B/year).
However, this cost is 29% lower than the cost of electricity consid-
ering existing technologies only with financial risk ($3.27B/year).
The total and financial risk costs increase by approximately 1%,
7% and 13% corresponding to increases in fuel prices of 10%, 50%
and 100%, respectively. The results show that an increase in fuel
price has a significant impact on the optimized total cost under
the consideration of financial risk and uncertainty.

An increase in the CO2 emission constraint from 6% to 20%
resulted in an increase of approximately 5% in the total cost of elec-
tricity with the use of existing technologies only were the total cost
of electricity was obtained to be $3.5B/year. However, with the
implementation of new technologies and under the consideration
of uncertainty and financial risk, an increase in the CO2 emission
constraint from 6% to 20% resulted in less than 1% increase in the
total cost of electricity were the total cost of electricity was
obtained to be $2.57B/year (Fig. 5). This is attributed to the higher
efficiency, environmental sustainability, and lower operating cost
of the new technologies.

For the first and second scenarios the amount of electricity pro-
duced (1.187E+8 and 1.286E+8, respectively) was approximately
equal to the base caseload demand requirement (1.206E+8). How-
ever, the difference between the amount of electricity produced in
the second scenario and the base caseload demand requirement,
the former being higher, can be attributed to the underproduction
penalty value, which is considerably high compared to the first sce-
nario (Fig. 6). The distribution of electricity generation among
existing and new technologies mostly depends on the CO2

emission constraint and is sensitive to the prices of fuels (i.e. coal
and natural gas).

The results withdrawn from the stochastic model regarding the
distribution of electricity generation among the given technologies
are comparable to those obtained from the deterministic model
[42]. Increasing the production capacity of fossil fuel plants was
sufficient to meet the higher production required for the second
scenario. This is due to the low CO2 emission constraint (6%). Fuel
switching between coal and natural gas plant is sufficient to meet
the higher CO2 emission constraint (20%). Fuel balancing between

Fig. 3. Sensitivy of total and financial risk costs to changes in fuel prices at 6% CO2

reduction target using existing technologies.

Fig. 4. Total and financial risk costs at 6% CO2 reduction target with integrated new
technologies.

Fig. 5. Total and financial risk costs at 20% CO2 reduction target using existing and
new technologies.

Fig. 6. Distribution of electricity generation among existing technologies at
different levels of CO2 reduction and penalty values.
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fossil fuel based and nuclear plants was more favorable when new
technologies were introduced (Fig. 7). It can be observed that the
production capacities of nuclear plants increase due to the high
costs associated with the carbon capture technologies and the ele-
vated fuel prices.

6. Conclusions

In this paper a stochastic optimization model was presented for
the management of the OPG case study in order to demonstrate the
applicability of the proposed methodology. Financial risk manage-
ment was incorporated in the decision making process to select the
optimum combination of power generating fleet that minimizes
the total cost of electricity generation while meeting production
and CO2 reduction target requirements. The financial risk associ-
ated with over or underproduction of electricity was also investi-
gated by outlining several scenarios defined by different penalty
values. Changes in the market prices of electricity or of the fuels
used to produce electricity are the two main variables that can
adversely impact OPG’s cash flows. The total cost of electricity at
6% CO2 reduction target and penalty values of C+ = $40/MW h and
C� = $400/MW h using existing technologies was obtained to be
$3.27B/year. However, with the incorporation of new technologies
it decreased to $2.33B/year. The penalty value had a significant
effect on the objective function value. For the case of C+ = $40/
MW h and C� = $40/MW h, the total cost of electricity production
was obtained to be $2.27B/year. Increasing the CO2 reduction tar-
get to 20% for the cases of using existing technologies and incorpo-
rating new technologies increased the total cost to $3.5B/year and
$2.45B/year, respectively. The level of CO2 reduction and the fuel
price, which were investigated through a sensitivity analysis, had
the most significant impact on the selection of power generation
technologies. The integration of new technologies with existing
ones provided a great economic potential as it had a significant
effect on reducing the total cost of electricity production.

Appendix A. Deterministic model for new technology
integration for energy planning

A.1. Objective function

The objective function consists of minimizing the sum of capital
investment cost ($/MW) for all power plants, retrofit cost ($/MW)
for fossil fuel plant, and operating cost ($/MW h) for all power
plants:

MinTot Cost ¼ Capitalþ Retrofit þ Operating ðA1Þ

Capital ¼
X

p

Fp Af
Pmax

T
Xp ðA2Þ

Retrofit ¼
X

f

Rf
Fmax

T
Af Xf ;ng ðA3Þ

Operating ¼
X

f ;j

ðOf þ Prj HRf ÞEf þ
X

rn

Orn Ern þ
X

p;j

ðOp

þ Prj HRpÞEp ðA4Þ

The variables in the above equations include binary variables and
positive variables. Binary variables are used to determine capital
investment cost, where Xf,j is for fossil fuel plants selection and fuel
type decision, j includes two types of fuel, coal and natural gas; Xr,n

and Xp are to decide whether to build renewable plants or new fossil
fuel plants; positive variables are Ef, Ern and Ep, which represent the
electricity generation amount for fossil fuel plants, renewable
energy plants and new fossil fuel plants process, respectively.

A.2. Constraints

A.2.1. Demand satisfaction
The total electricity generation, TotE, must be equal to or greater

than the desired electricity demand.

TotE ¼
X

f

Ef þ
X

m

Em þ
X

p

Ep ðA5Þ

TotE ¼ ð1þ GeÞEd ðA6Þ

Ge is gross percentage of electricity demand i.e. 1%, 5%, 10%, 20%,
etc. Ed is electricity demand.

A.2.2. Capacity constraints
The following constraints place an upper bound on electricity

produced from each plant as well as ensuring that electricity pro-
duction from fossil fuel plants is zero when no fuel is assigned to
the plant.

Ef ;j 6 Fmax Xf ;j ðA7Þ

Em 6 RNmax Xrn ðA8Þ

Ep 6 Pmax Xp ðA9Þ

Ef ;j P Lf Fmax Xf ;j ðA10Þ

A.2.3. Carbon emission constraint
Here CO2 emissions must satisfy a CO2 reduction target. TotCO2

is total CO2 emission from all the power plants, and Cre is the CO2

reduction target. Cnow is the current amount of CO2 emission in
millions of tonnes per year.

TotCO2 ¼
X

f ;j

Cf ;j Ef ;j þ
X

p

Cp Ep ðA11Þ

TotCO2 ¼ ð1� CreÞCnow ðA12Þ

A.2.4. Fuel selection and plant shutdown
For each fossil fuel plant, the process is either operating with

one chosen fuel or shut down.
X

j

Xf ;j 6 1 ðA13Þ

For stations that only use natural gas as fuel:

Xln;ng ¼ 1 ðA14Þ

Fig. 7. Distribution of electricity generation among existing and new technologies
at C+ = $40/MW h and C� = $400/MW h.

80 S. Ahmed et al. / Applied Energy 128 (2014) 75–81

                               6 / 7

http://paperhub.ir
https://www.itrans24.com/


ln is the index of existing fossil fuel stations which chose natural
gas. ng indicates natural gas.
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