Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii1

JAMES V. MORONEY*, 2, BARBARA J. WILSON, AND N. E. TOLBERT
Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824

ABSTRACT

The flux of glycolate through the C3 pathway in Chlamydomonas reinhardtii was estimated after inhibition of the pathway with aminooxyacetate (AOA) or aminoacetonitrile (AAN) by measurement of the accumulation of glycolate and glycine. Cells grown photoautotrophically in air excreted little glycolate except in the presence of 2 mM AOA when they excreted 5 micromoles glycolate per hour per milligram chlorophyll. Cells grown on high CO2 (1–5%) when transferred to air produced three times as much glycolate, with half of the glycolate metabolized and half excreted. The lower amount of glycolate produced by the air-grown cells reflects the presence of a CO2 concentrating mechanism which raises the internal CO2 level and decreases the ribulose-1,5-bisP oxygenase reaction for glycolate production. Despite the presence of the CO2 concentrating mechanism, there was still a significant amount of glycolate produced and metabolized by air-grown Chlamydomonas. The capacity of these cells to metabolize between 5 and 10 micromoles of glycolate per hour per milligram chlorophyll was confirmed by measuring the biphasic uptake of added labeled glycolate. The initial rapid (<10 seconds) phase represented uptake of glycolate; the slow phase represented the metabolism of glycolate. The ratios of glycolate metabolism were in agreement with those determined using the C3-cycle inhibitors during CO2 fixation.

Chlamydomonas reinhardtii exhibits a higher affinity for C3 when grown phototrophically with air levels of CO2 (0.03–0.04%) than when grown with air supplemented with 1 to 5% CO2 (3). In addition, the air-grown algal cells, like C3 plants, appear to lack photorespiration, in that they have a low CO2 compensation point (<1 μM CO2) and there is no significant O2 inhibition of net CO2 fixation (13, 20, 24). Air-adapted Chlamydomonas normally do not excrete glycolate into the media (19, 27), in contrast to the high rates of glycolate excretion by cells grown in the presence of high levels of CO2 and then exposed to low CO2 conditions. Both cell types have only small pools of glycine and serine even when illuminated under photorespiratory conditions (low CO2 and/or high O2).

Since the air-adapted cells exhibit such low CO2 compensation points and low O2 inhibition of CO2 fixation and produce only small amounts of glycine and serine, it has been proposed that

the oxidative photosynthetic carbon cycle (C3 cycle) may be different or absent in this alga (12, 20). When Chlamydomonas cells are grown with limiting CO2 for at least 3 h they induce a CO2 concentrating system (1, 3), which includes one or more isozymes of carbonic anhydrase (7). This CO2 concentrating system seems to increase the effective CO2 concentration at the site of ribulose-1,5-bisP carboxylase/oxygenase to favor the carboxylation reaction over the oxygenation reaction and reduce P-glycolate biosynthesis. This would reduce the loss of CO2 from the decarboxylation of glycine which would reduce the CO2 compensation point. However, when inhibitors of the C3 cycle are added to air-adapted cells illuminated in the presence of 21% O2 and 330 μL/L CO2, a large amount of glycolate was excreted indicating that a significant flux through the C3 pathway did exist (27). As in a C4 plant, the low CO2 compensation point seen in air-grown algal cells probably reflects their ability to trap and efficiently refix the CO2 from photorespiration.

In this work we have estimated the flux of carbon through the C3 cycle by measuring the amount of glycolate excreted and by looking at the metabolism of externally added glycolate. While the CO2 concentrating mechanism in air-grown cells does decrease the ribulose-1,5-bisP oxygenation reaction, it does not eliminate the biosynthesis of glycolate. In addition, while some of the enzymes of the C3 cycle in green algae are different from those in higher plants, the flow of carbon from glycolate to glyoxylate, glycine and serine (11) is apparently the same.

MATERIALS AND METHODS

Chlamydomonas reinhardtii, strains 137+ from Dr. R. K. Togasaki and 2137+ from Dr. M. H. Spalding were grown phototrophically in minimal media (26). Cultures of 1 L were grown in Fernbach flasks with continuous mixing on an Eberbach shaker. During illumination (100 μE m−1·s−1 at 20–25°C) cultures were aerated with either air or air supplemented with 3 to 5% CO2. Cells were harvested in the middle part of the log phase of growth by centrifugation at 1,000g for 5 min at 4°C. The cells were washed once by resuspending the pellet in 25 mM Hepes-KOH (pH 7.2) and recentrifuged at 10,000g for 5 min. The cells were then resuspended in the same buffer at a concentration of about 0.4 mg Chl·ml−1 and stored on ice until use within 2 h.

Photosynthetic CO2 assimilation was measured by determining the acid-stable 14C present after illumination in the presence of NaH14CO3 (50 μCi/mm). Harvested cells were diluted from the concentrated suspension to a final concentration in the buffers as indicated in the table and figure legends. Buffers were prepared daily and adjusted to the indicated pH with KOH and then bubbled with N2 to lower both the dissolved CO2 and O2 prior to the addition of cells. Experiments were performed in a Rank Brothers O2 electrode so that the O2 concentration could be monitored throughout the experiment. To deplete the diluted cell suspension of the endogenous CO2, the suspension was

1 Supported by National Science Foundation grant PCM 8005917 and by the McKnight Foundation. Published as article 11964 of the Michigan Agricultural Experimental Station.
2 Present address: Department of Botany, Louisiana State University, Baton Rouge, LA 70803.
3 Abbreviations: C3, inorganic carbon (CO2 + HCO3−); AOA, aminooxyacetate; AAN, aminoacetonitrile; K0.5 (CO2), the CO2 concentration when oxygen evolution is half-maximal.
illuminated until O₂ evolution ceased. At this point the O₂ concentration was still below the normal air level of 21% and could be increased by exposing the suspension to air. The suspension was then illuminated for one additional minute in the presence or absence of inhibitor(s) before the addition of [¹⁴C] bicarbonate to the concentration indicated in the table and figure legends. In some short-term experiments the C₄ concentration was maintained at 60 μM by the addition of NaH¹⁴CO₃ whenever more than 10% of the added bicarbonate was depleted, as determined by the extent of O₂ evolution (3, 17).

For experiments with a constant concentration of CO₂ and O₂, air in a 20 L sealed container was circulated through the culture. The air had been depleted of CO₂ by recycling through a 2 N KOH solution for 3 h, and then ¹⁴CO₂ equivalent to 310 μL/L was added to the reservoir by the addition of NaH¹⁴CO₃ to a 2 N HCl solution in the container. The cell suspensions, previously depleted of endogenous CO₂, were illuminated and aerated with 300 ml·min⁻¹ of the 310 μL/L ¹⁴CO₂ air. Thus glycolate excretion and CO₂ fixation were measured in the same experiment. Excreted glycolate was assayed by the Calkins (5) procedure after sedimenting the cells. In some cases the supernatant was first concentrated by partial removal of the solvent under reduced pressure. The temperature was held at 30°C and the loss of glycolate was less than 5%.

For identification of the labeled C₂ cycle intermediates, air-grown cells or 5% CO₂-grown cells (25 mg Chl·mL⁻¹) were incubated in the light for 3 or 4 min in the presence of 10 μM NaH¹⁴CO₃. The incubation was stopped by the addition of an equal volume of hot methanol. Aliquots of the soluble labeled metabolites were chromatographed on Whatman No. 1 paper for product identification (2). Before the paper was completely dry, it was sprayed with a 1 M NaHCO₃ solution to prevent volatilization of glycolic acid. The radioactive compounds were located by exposure to x-ray film for about 2 weeks, and the spots were cut out and counted in scintillation vials. Compound identification was based upon a standard chromatographic map of R₀ values (2).

For glycolate uptake experiments, air-grown or 5% CO₂-grown cells (50 μg Chl·mL⁻¹) were incubated in 25 mM Hepes-KOH (pH 7.5) with 10 mM [²⁻¹⁴C]glycolate or [¹⁴C]glycolate for the indicated times. Aliquots of 200 μL were centrifuged through silicone oil in 400 μL microfuge tubes (1, 16) and the amount of label in the pellet was determined. The amount of label in the pellet was corrected for internal volume by doing parallel uptake studies with [¹⁴C]sorbitol and [³H₂]O₂ as previously described (1, 17).

AOA, AAN, and acetazolamide were from Sigma. NaH¹⁴CO₃ was from New England Nuclear. [²⁻¹⁴C]Glycolate was purchased from ICN Biomedicals, Inc. The [²⁻¹⁴C]glycolate was found to have a small contamination of H¹⁴CO₃⁻, which was highly significant if uptake of ⁴C label was followed. Therefore, the labeled glycolate was purified by acidification overnight with 200 mM HCl. This acidified stock was then diluted with unlabeled glycolate to a specific radioactivity of 25 μCi·mmol⁻¹.

RESULTS

Amount of Glycolate Metabolism or Excretion. When Chlamydomonas cells were illuminated in the presence of low concentrations of CO₂ and 2 mM AOA, they excreted glycolate (27). The extent of glycolate excretion by air-grown or 5% CO₂-grown Chlamydomonas cells is shown in Table I. During the experiment, 21% of O₂; and 310 μL/L ¹⁴CO₂ were kept constant by recirculating from a large reservoir. Both glycolate excretion and ¹⁴CO₂ fixation were measured at the same time. At this low concentration of CO₂, the rate of CO₂ fixation was 2 to 3 times higher in the air-grown cells than in the 5% CO₂-grown cells due to the presence of the C₄ concentrating system in the air-grown cells. These data are consistent with the previously measured Kₘ(CO₂) for air-grown or 5% CO₂-grown cells (1, 17). In aqueous solutions equilibrated with air levels of CO₂, the CO₂ concentration (11 μM) is higher than the Kₘ(CO₂) of 0.5 to 3 μM for the air-grown cells, but less than the Kₘ(CO₂) of 25 μM for the 5% CO₂-grown cells (1, 17). The air-grown cells excreted only traces of glycolate in the absence of inhibitor. However, in the presence of AOA, air-grown cells excreted about 5 μmol glycolate·h⁻¹·mg⁻¹ Chl which was about one-third the rate of the high CO₂-grown cells (Table I). While this rate was lower than the rate of glycolate excretion in CO₂-grown cells, it generally was between 5% and 10% of the CO₂ fixation rate. The results indicate that there was a significant amount of glycolate production and metabolism despite the presence of the CO₂ concentrating system and the absence of excreted glycolate.

Experiments were performed to determine whether AOA was increasing glycolate biosynthesis or blocking its metabolism. Previous work has indicated that the glycolate excreted from Chlorella (15) or Chlamydomonas (28) was formed by the ribulose-1,5-bisP oxygenase and P-glycolate phosphatase activity of the C₄ cycle. Since AOA is an inhibitor of the glycolylate-serine aminotransferase (23), it is likely that the increase in glycolate excretion was due to the blockage of glycolate metabolism. However, because the increase in glycolate excretion was large when AOA was added, and for air-grown cells somewhat unexpected, it was possible that AOA may have other effects (27).

One possible explanation for the increase in glycolate excretion by AOA treated air-grown cells was that AOA inhibited the CO₂ concentrating mechanism. This was not the case because AOA did not change the measured Kₛ(CO₂) of air-grown cells, which remained very low at about 1 μM. If AOA were inhibiting the CO₂ concentrating mechanism, the Kₛ(CO₂) would be expected to increase. In addition, air-grown cells accumulated C₄ to the same extent (to 1.5 mm when incubated with 200 μM NaH¹⁴CO₃ at pH 7.2) in the presence or absence of AOA, which also indicated that the C₄ concentrating mechanism was unaffected. AAN, an inhibitor of glycine to serine interconversion in higher plants (22, 29), also had no effect on the Kₛ(CO₂) for O₂ evolution or C₄ accumulation.

Another way to test whether AOA or AAN altered the CO₂ concentration mechanism in Chlamydomonas was to measure CO₂ fixation rates at low concentrations of CO₂ where high rates of CO₂ fixation are most dependent on an operational C₄ accumulating mechanism. AAN did not inhibit CO₂ fixation by Chlamydomonas at low CO₂ concentrations, and AOA caused, at most, a 10 to 18% inhibition. In contrast, when acetazolamide was used to inhibit the periplasmic carbonic anhydrase which is a component of the C₄ concentrating mechanism of Chlamydomonas (16), there was an increase in the Kₛ(CO₂), and a 71% decrease in the rate of CO₂ assimilation (16). These results are consistent with the hypothesis that AOA and AAN were not affecting C₄ accumulation and that the increased label in glycolate and glycine reflect the inhibition of the normal metabolism of
these C\textsubscript{3} cycle intermediates.

Products of the C\textsubscript{3} Cycle. To measure the inhibition of the C\textsubscript{3} cycle by AOA or AAN, NaH14CO\textsubscript{3} of high specific activity was given to air-grown or 5\% CO\textsubscript{2}-grown cells for short periods of time (3 or 4 min), and the per cent 14C in glycolate, glycine and serine was determined (Table II). These experiments were done at air levels of O\textsubscript{2} with the CO\textsubscript{2} concentration maintained at 10 \mu\textsubscript{M} by additions of 14C bicarbonate (see legend to Table II). In agreement with the results in Table I, a rate of 30 \mu\textsubscript{mol} CO\textsubscript{2} fixation \textsuperscript{-h-1} mg -1 Chl by 5\% CO\textsubscript{2}-grown cells was about one-third that of air-grown cells at this low CO\textsubscript{2} concentration. However, the maximum rates of CO\textsubscript{2} fixation for both cell types was about the same, averaging 110 \mu\textsubscript{mol} CO\textsubscript{2} fixation \textsuperscript{-h-1} mg -1 Chl. When 2 mM AOA was added to air-grown cells a large increase in labeled glycolate was observed. When AAN was added to air-grown cells, the amount of label in glycine increased but the label in glycolate did not. In the presence of both inhibitors only labeled glycolate accumulated, as expected, since the pathway should be blocked by AOA before glycine formation. These data indicate that AOA was effectively blocking the C\textsubscript{3} pathway between glycolate and glycine, because no glycine accumulated in the presence of both inhibitors. The same pattern was observed in 5\% CO\textsubscript{2}-grown cells except that the percentage of label was higher in the C\textsubscript{3} cycle intermediates. This increased percentage reflects both the higher rate of glycolate production in these cells without the C\textsubscript{3} pump and the lower rate of CO\textsubscript{2} fixation. With AOA present, the label in glycolate represented 33\% of the fixed CO\textsubscript{2}, after only 4 min. With the C\textsubscript{3} pathway blocked, glycolate was an end product that the algal cells excreted.

Amount and Specific Activity of Excreted Glycolate. Since metabolism of the C\textsubscript{3} intermediates could be effectively blocked by AOA or AAN, the buildup of label in these compounds, specifically glycolate, could give an estimation of the total carbon flux through the C\textsubscript{3} pathway, if the specific activity of the C\textsubscript{3} cycle intermediates were known. The specific radioactivity of glycolate formed after the addition of 14CO\textsubscript{2} is less than that of the added NaH14CO\textsubscript{3} at short times because it arises also from the unlabeled sugar phosphate reserves of the C\textsubscript{3} cycle (28). To calculate the specific radioactivity of the excreted glycolate, both the total amount as measured by the Calkins method and the amount of 14C in glycolate were determined from both air-grown and 5\% CO\textsubscript{2}-grown cells. In the average of 3 experiments the specific radioactivity of the excreted glycolate was 37\% of the added 14C bicarbonate in the case of 5\% CO\textsubscript{2}-grown cells, and 78\% in the case of air-grown cells. The lower specific radioactivity of the glycolate in the high CO\textsubscript{2}-grown cells is probably due to the utilization of carbon reserves by these cells under the low CO\textsubscript{2} conditions of these experiments. When these cells, without the C\textsubscript{3} concentration mechanism, are illuminated in the presence of limiting CO\textsubscript{2}, the rate of ribulose-1,5-bisP oxygenation could deplete the chloroplast of its sugar phosphate reserves. This is especially true when the C\textsubscript{3} pathway is blocked and the carbon in glycolate cannot be returned to the chloroplast as CO\textsubscript{2} and glycerate. Under these conditions more of the ribulose-1,5-bisP seems to come from unlabeled carbon reserves within the cell instead of from newly labeled PGA from ribulose-1,5-bisP carboxylation and the C\textsubscript{3} cycle. Using these figures in short-term labeling experiments (such as Table II), the flux of glycolate through the C\textsubscript{3} cycle was calculated to be 4.5 \mu\textsubscript{mol} glycolate \textsuperscript{-h-1} mg -1 Chl for air-grown cells under low CO\textsubscript{2} conditions, while a somewhat higher production of about 10 \mu\textsubscript{mol} glycolate \textsuperscript{-h-1} mg -1 Chl was found for 5\% CO\textsubscript{2}-grown cells. These results are similar to the rate of glycolate excretion for the 30 min experiment reported in Table I.

Glycolate Uptake and Metabolism. The ability of air and CO\textsubscript{2}-grown cells to utilize glycolate was estimated by feeding 14C-labeled glycolate. Spencer and Togasaki (25) have shown that *Chlamydomonas* can utilize exogenously added glycolate and that under low CO\textsubscript{2} conditions the added glycolate stimulated algal growth. The added external glycolate pool equilibrated with the internal glycolate pool in less than 10 s or by the time the first point in Figure 1. The rate of glycolate incorporation into other products in the algal cells after the first 10 s was a measure of the rate of glycolate metabolism (Fig. 1). An external glycolate concentration of 10 mM was required to saturate the rate of glycolate metabolism (data not shown). Glycolate (10 mM) also saturated the growth stimulation by glycolate previously reported (25). After feeding 14C glycolate, the first products are glycine and serine, as reported by Lord and Merrett (14) with *Chlorella*.

<table>
<thead>
<tr>
<th>Cell Growth Conditions and Additions (2 mM)</th>
<th>Glycolate</th>
<th>Glycine</th>
<th>Serine</th>
</tr>
</thead>
<tbody>
<tr>
<td>% total 14C fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-grown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>2.0</td>
<td>0.8</td>
<td>4.1</td>
</tr>
<tr>
<td>AOA</td>
<td>14.5</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>AAN</td>
<td>1.8</td>
<td>9.0</td>
<td>2.9</td>
</tr>
<tr>
<td>AOA + AAN</td>
<td>14.6</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>5% CO\textsubscript{2}-grown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>10.8</td>
<td>1.5</td>
<td>5.3</td>
</tr>
<tr>
<td>AOA</td>
<td>33.2</td>
<td>0.3</td>
<td>1.6</td>
</tr>
<tr>
<td>AAN</td>
<td>12.3</td>
<td>23.5</td>
<td>3.1</td>
</tr>
<tr>
<td>AOA + AAN</td>
<td>31.9</td>
<td>1.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table II. 14C Incorporation into Glycolate, Glycine, and Serine by Air-grown or 5\% CO\textsubscript{2}-Grown *Chlamydomonas*

Cells (25 \mu\text{g} Chl \textsuperscript{-mL-1}) in 25 mM Hepes-KOH (pH 7.0) were illuminated in an O\textsubscript{2} electrode chamber until the endogenous CO\textsubscript{2} was depleted. Where indicated, the inhibitors were added and the cells illuminated for an additional minute. NaH14CO\textsubscript{3} was then added to 60 \mu\textsubscript{M} and maintained at that concentration by additions of 10 mM NaH14CO\textsubscript{3} whenever 10 \mu\textsubscript{M} O\textsubscript{2} was evolved during the course of the experiment. The reaction was terminated by the addition of methanol to 50\% after 3 min for the air-grown cells and after 4 min for the 5\% CO\textsubscript{2}-grown cells.

Fig. 1. Time course of the uptake of glycolate by *Chlamydomonas*. Air-grown cells were incubated at room temperature in the light with 10 mM \textsuperscript{1-14C} glycolate. Cells were separated from the media by centrifuging through a layer of silicone oil. Glycolate uptake was determined by measuring the radioactivity in the pellet. Each point is the average of 6 determinations.
The rates of metabolism of added glycolate by air-grown or 3% CO₂-grown cells are shown in Figure 2. For air-grown cells glycolate metabolism was between 6 and 13 μmol h⁻¹ mg⁻¹ Chl while for CO₂-grown cells the rate was generally lower, about 3 to 8 μmol h⁻¹ mg⁻¹ Chl. This difference in glycolate metabolism between the cell types probably reflects the increased levels of glycolate dehydrogenase reported in air-grown cells (19). These rates of glycolate metabolism were almost completely inhibited by the addition of AOA (Fig. 3). AAN, on the other hand, only slightly inhibited the utilization of glycolate which could still be converted to glycine. Neither inhibitor had any effect on the ability of the glycolate to enter the cells (data not shown). The nearly complete inhibition of the metabolism of added glycolate by AOA supports the contention that AOA is an effective inhibitor of glycolate metabolism, and the amount of glycolate excreted in the presence of AOA reflects and amount of glycolate produced by those cells at the CO₂ and O₂ concentrations used.

DISCUSSION

The excretion of glycolate when air-grown cells were illuminated in the presence of AOA indicated that a significant amount of glycolate was being synthesized despite the operation of the CO₂ concentrating system. The glycolate excreted by *Chlamydomonas* in the presence of AOA is the result of ribulose-1,5-bis phosphate oxygenase activity because this excretion requires O₂ and is inhibited by high concentrations of CO₂ (28). Furthermore, it is unlikely that AOA is causing an increase in glycolate biosynthesis since AOA has no effect on purified ribulose-1,5-bisP carboxylase/oxygenase; specifically, it does not alter the ratio of carbon dioxide to oxygenase activities (18) and has no effect on the CO₂ concentrating system. Thus the glycolate excreted by these cells in the presence of AOA was due to the blocking of glycolate metabolism. In support of this hypothesis, a second inhibitor, AAN, which blocks the glycine/serine interconversion (22, 29) caused in air-grown cells, a buildup of glycine comparable to the AOA induced glycolate build-up (Table II). These results indicate that there was a flux of about 5 μmol h⁻¹ mg⁻¹ Chl of glycolate in air-grown *Chlamydomonas* when they are illuminated in the presence of air levels of CO₂ and O₂.

The observation that glycine does not accumulate when both AOA and AAN are present indicates that AOA effectively blocks the C₃ pathway and that labeled glycine is arising from glycolate via glycylate as in higher plants (11). Since AOA is an excellent inhibitor of the C₃ cycle, the amount of glycolate excreted by cells in the presence of AOA can be used to determine the amount of ribulose-1,5-bisP oxygenase activity in these cells. It was noted that AOA did not cause glycylate accumulation or excretion, even though the inhibition of glycolate aminotransferase by AOA should have resulted in glycine accumulation. We speculate that the glycylate was reduced to glycolate which was the specific compound excreted. If part of the glycylate was utilized in other metabolic pathways, such as oxidation or metabolism by a glycylate cycle, then our estimation of the AOA inhibition for the total carbon flow through the C₃ cycle is too low. However, similar values were obtained for glycine accumulation in the presence of AAN which suggest that the glycylate that was formed in the presence of AOA was mostly reduced back to glycolate.

A comparison of ribulose-1,5-bisP carboxylase activity (CO₂ fixation) and oxygenase activity (glycolate excretion) by air-grown or CO₂-grown cells is presented in the last column of Table I. The results point out the adaptive significance of the CO₂ concentrating system. In high CO₂-grown cells, without the CO₂ concentrating system, the rate of glycolate excretion was about 50% of the CO₂ fixation rate when the external CO₂ was at air level. This is similar to the estimates of the carboxylation to oxygenation rates in higher plants (30). In the air-adapted cells, the rate of glycolate excretion was only 7% of the CO₂ fixation rate. This is due both to a higher rate of CO₂ fixation by these cells compared to high CO₂-grown cells, and by a lowering of the rate of glycolate biosynthesis. These observations are consistent with the operation of a CO₂ concentrating system in these cells which would increase the CO₂ level thereby increasing the ribulose-1,5-bisP carboxylation reaction while decreasing the competing oxygenation reaction.

The significance of the C₃ pathway in green algae has been the subject of debate for years. The fact that algae excrete glycolate under certain conditions (12, 19, 27), utilize glycolate rather slowly (25), and contain only low levels of certain enzymes of the pathway, most notably glycolate dehydrogenase (4, 19) and glycine oxidase (4), have led to postulates that these cells have only a limited capacity to metabolize glycolate. Our results show...
support the idea that *Chlamydomonas* cells have a limited ability to metabolize glycolate, but in conjunction with the CO₂ concentrating system, they have enough enzymic capacity to handle the amount of glycolate normally made when cells are photosynthesizing with air levels of CO₂ and O₂.

Assuming that the total glycolate production is the same with or without AOA then the difference between the amount of glycolate excreted in the presence or absence of AOA represents the amount of glycolate normally metabolized. In the case of 5% CO₂-grown cells about half of the glycolate (approximately 5–10 μmol·h⁻¹·mg⁻¹Chl) was excreted and about half metabolized (Table 1). This implies that these cells without the C₃ pump do not have the enzymic capacity to handle a larger amount of glycolate produced when suddenly placed in a photorespiratory environment. The very low levels of glycolate dehydrogenase found in these cells support this argument (4, 19, 28). For the air-grown cells with their CO₂ concentrating mechanism and higher levels of glycolate dehydrogenase (19), the total glycolate production measured in the presence of AOA did not exceed 5 to 10 μmol·h⁻¹·mg⁻¹Chl. Since no glycolate was excreted, these cells can apparently metabolize this amount of glycolate by the C₃ pathway. This contention is supported by the glycolate feeding studies. When labeled glycolate was added to algal cells there was an initial rapid uptake followed by a slower incorporation of the label into C₃ cycle intermediates. The rapid uptake of glycolate by algae is similar to the rapid uptake by intact chloroplasts (9, 10). The slower incorporation of label by the algae which takes place at times greater than 10 s represents the metabolism of the added glycolate, as has been reported in *Chlorella* (14). Reports on uptake of small organic molecules such as glycolate or acetate by unicellular algae with data collected over time points greater than 10 s should be interpreted as the rate of metabolism of those compounds, rather than the rate of uptake. The rates of added glycolate utilization by *Chlamydomonas* cells (5–10 μmol·h⁻¹·mg⁻¹Chl) is close to the additional glycolate excretion seen when AOA is added to CO₂-grown cells (Table 1). In other words, the extra glycolate excreted when AOA is added to block glycolate metabolism represents the amount of glycolate these cells are capable of metabolizing. In addition, the similarity between the rate of added glycolate metabolism and the glycolate excretion data indicates that the AOA and AAN sensitive pathway of glycolate metabolism is the major way these cells utilize glycolate. The estimation of the flux of glycolate through the C₃ cycle (between 5 and 10 μmol·h⁻¹·mg⁻¹Chl) is also supported by the observation that methionine sulfoximine-treated *Chlamydomonas* cells excreted 3.5 μmol of NH₃ per h⁻¹·mg⁻¹Chl when illuminated at very low CO₂ concentrations (21). This NH₃ excretion was also light dependent and inhibited by high CO₂ concentrations as is glycolate excretion. Since 1 NH₃ is released by glycine decarboxylation for every 2 glycines produced, these results indicate a flux of approximately 7 μmol glycine·h⁻¹·mg⁻¹Chl in these cells.

Other pathways for glycolate metabolism have been suggested. In the tartaronic semialdehyde pathway two glyoxylates condense to form glycerate (6). If this pathway were important in *Chlamydomonas*, then glycerate would not be expected to build up in the presence of AAN, and NH₃ would not be released in the presence of methionine sulfoximine in contrast to the observed results. Another proposed pathway for glycolate metabolism is the conversion of glyoxylate to CO₂ and formate (8). Activity of formate dehydrogenase was not detected (L Dahl, NE Tolbert, unpublished data) and formate was poorly utilized by *Chlamydomonas* cells (<1.5 μmol·h⁻¹·mg⁻¹Chl) (data not shown). Since 2–3 μmol·h⁻¹·mg⁻¹Chl in air-grown cells, the labeled formate should have been metabolized at a comparable rate if that pathway was important.

In conclusion, glycolate is produced in significant quantities during photosynthesis by both air-grown or CO₂-grown cells. This glycolate is metabolized to glyoxylate and glycine, as in higher plants, although the enzymes catalyzing these reactions are located solely in the mitochondria instead of both the mitochondria and the peroxisomes (11). This difference in subcellular location of the C₂ cycle enzymes may explain the reason for the small intracellular pools of glycine and serine in *Chlamydomonas* as compared to higher plants. In higher plants, glycine must be exported by the peroxisomes for metabolism in the mitochondria, and serine in turn must move from the mitochondria to the peroxisomes. This results in the large buildup of these metabolites. Since glycine and serine are produced and metabolized within the same organelle in *Chlamydomonas*, there may be no small intracellular pools in this alga. However, the accumulation of glycine observed when AAN is added to algal cells indicates that normally these small pools of glycine and serine are turning over rapidly.

Acknowledgments—The authors thank Tamra Reed and Stephen Dietrich for excellent technical assistance and Diane W. Husic and Dr. H. David Husic for their helpful discussions.

LITERATURE CITED

5. CALKINS VP 1943 Microdetermination of glyclic and oxalic acid. Ind Eng Chem Anal Ed 15: 762–763

15. LOKKER GH, CB OSMOND, S AKAZAWA, S ASAMI 1978 On the mechanism of glycine synthesis by *Chlamatium* and *Chlorella*. Arch Biochem Biophys 185: 49–56

23. SHIOI Y, M NAGAMINE, T SASA 1984 Purification and properties of L-alanine: