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ABSTRACT

In 1991 A. D. Gunawardena et al. reported that the convergence rate of the
Gauss-Seidel method with a preconditioning matrix I + S is superior to that of the
basic iterative method. In this paper, we use the preconditioning matrix I + S(a). If
a coefficient matrix A is an irreducibly diagonally dominant Z-matrix, then [I +
S(a)]A is also a strictly diagonally dominant Z-matrix. It is shown that the proposed
method is also superior to other iterative methods. © 1997 Elsevier Science Inc.

1. INTRODUCTION

Let us consider iterative methods for the solution of the linear system
Ax=b, (1

where A is an n X n square matrix, and x and b are vectors. Then the basic
iterative scheme for Equation (1) is

Mxk+1=ka+b, k=0,1,..., (2)
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where A = M — N, and M is nonsingular. Thus (2) can also be written as

. (3)

where T= M"IN, ¢ = M~ 'b. Assuming A =1~ L — U, where I is the
identity matrix, and L and U are strictly lower and strictly upper triangular
matrices, respectively, the iteration matrix of the classical Gauss-Seidel method
is given by T = (I — L)"'U.

We now transform the original system (1) into the preconditioned form

xk+1=Txk+C, k=0,1,..

PAx = Pb. (4)
Then, we can define the basic iterative scheme:
M,x;,, = N,x; + Pb, k=0,1,..., (5)
where PA = M, — N, and M, is nonsingular.

P
Recently, Gunawardena et al. [1] proposed the modified Gauss-Seidel
method with P = I + S, where

0 —ap 0 0
0 0 —ag 0
S = .
0 0 0 —G,_ i
0 0 0 0

The performance of this method on some matrices is investigated in [1].

In this paper, we propose a scheme for improving of the modified
Gauss-Seidel method and discuss convergence. Finally, we show that this
method yields a considerable improvement in the rate of convergence.

2. PROPOSED METHOD

First, let us summarize the modified Gauss-Seidel method [1] with the
preconditioner P = I + S. Let all elements a,;,, of S be nonzero. Then we
have

Ax=(I1+S)Ax=[I-L—-SL~(U-S+ SU)]x,
bh=(1 ©)

+ 8)b.
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Whenever
a;00,,.; +1 for i=1,2,...,n—1,

(I-SL-L)! exists, and hence it is possible to define the Gauss-Seidel
iteration matrix for A, namely

T=(I-SL—-L) '(U-S+SU). (7)

This iteration matrix T is called the modified Gauss-Seidel iteration matrix.
We next propose a new iterative method with the preconditioned matrix,

P=1+5(a),
where S(a) is
0 —aay, 0 0
0 0 —yay, 0
S(a) = : :
O 0 0 —an»lan—ln
0 0 0 0

Thus we obtain
A(a) =[I+S(a)]A=1—-L-S(a)L — [U—S(a) + S(a)U],
b(a) =[I+ S(a)]b. (®
Whenever
a0, %1  for i=12..,n-1,

i

[I — S(a)L — L] exists, and hence it is possible to define the Gauss-Seidel
iteration matrix for A(a), namely

T(a) = [I-S(a)L — L] '[U - $(a) + S(a)U]. (9)
REMARK 1. In (9), if o, =0 for all i, T(a) reduces to the classical

Gauss-Seidel iterative method, and if «, = 1 for all i, T(a) reduces to the
modified Gauss-Seidel iterative method.
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3. CONVERGENCE OF THE PROPOSED METHOD

First, we give a well-known result [2, 3].

LEMMA 2.  An upper bound on the spectral radius p(T) for the Gauss-
Seidel iteration matrix T is given by

u.
T <max—l—:,
p(T) < m: -1

where [, and @, are the sums of the moduli of the elements in row i of the
triangular matrices L and U, respectively.

Next, we discuss the convergence of the proposed method. Let Ala) =
D(a) — E(a) — F(a), where D(a), —E(a), and —F(a) are the diagonal,
strictly lower triangular, and strictly upper triangular parts of A(a). Then the
elements of A(a) are

4y — 08018, 1<i<n,

- _ 1]
%~ \a,,. i=n (10)

If A is a diagonally dominant Z-matrix, then we have
0<a;,,8,,;<1 for j#i+1,
(11)
—1<6;;4118;11i41 < 0.

Therefore, the following inequalities hold:

44194120
i-1
(TR Z Ay = 0,
j=1

n
Qi+ Z ai+lj<0’ I<i<n.
j=i+l



GAUSS-SEIDEL. METHOD FOR Z-MATRICES 117
For simplicity we denote

Pi = 41194145
i—1

qi = Qi1+ Z Ziv1j>
j=1

n
Ty = 841 Z Biv1ys for 1<i<n,
=i+l
and set
p, =0,
9, =0
r, = 0.

Then the following inequality holds:

n
Pi+qi+ri=aii+1zai+1j<0, I<i<n.

j=1

Furthermore, if a;,,, # 0 and }_,4,,,,; < 0 for some i < n, then we have

pitg +r,<0 for some i <n. (12)

THEOREM 3.  Let A be a nonsingular diagonally dominant Z-matrix with
unit diagonal elements and ¥j. a,; > 0. Assume that Lj_a;,,;> 0 if
XYi.1a;;, =0 for some i <n. Then Ala@) is a strictly diagonally dominant
Z-matrix, and p(T(a)) <1 for 0 < a; < 1 (1 <i < n).

Proof. Let d(a),, l(a),, and u(a); be the sums of the elements in row
i of D(a), L(a), and U(a), respectively. The following equations hold:

d(a)i=a;=1-a;p, l1<i<n,

i—1
I(a);= - Z{ai' =1 + a,q,, 1<i<n,
j=1 ) (13)

A
N
2

n
u(a); = — Z {Eij} =u; + ar;, 1
=i+1

j=
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where [, and u, are the sums of the elements in row i of L and U for
A =1—-L — U, respectively. Since A is a diagonally dominant Z-matrix,
from (11) the following relations hold:

1 —aa,,,0,,;>0 for j=i,

i—1
iy — Oy, Y a1k <O for i>j,
k=1

n
(1- ai)aij — a0 Y 845 <0 for i <j.
k=i+2

Therefore, (@), > 0, u(a), > 0, and A(a) is a Z-matrix. Moreover, from
(12) and the assumption, we can easily obtain

d(a), —l(a); ~u(ea),=(d, -, —u;)) —a(p,+q +1r)>0
forall i. (14)

Therefore, A(a) satisfies the condition of diagonal dominance. From u(a),
> 0, we have

d(a), —l(a),>u(a),; >0 foralli.

This implies

u(a), 1 15
(), —(a), (15)
Hence, p(T(a)) < 1, by Lemma 3. [ ]

THEOREM 4. Let A be a matrix satisfying the conditions in Theorem 3.
Put o=~ —u;—2a,,,)/(p,+q +r,—2a,.,) for 1<i<n
Then a; > 1, Ala) is a strictly diagonally dominant matrix, and p(T(a)) <
1forl<a <aj.
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Proof. Since LI, ;,;a,.1; <0, we have

n
pitg +r—2a;,=a, Z Qiv1j — 2
j=1

=a;;4+4 Z ai+1]-_]. >0 fOr 1<z<n,
j=1
jeit1
(16)
and
1=l —u;—2a;,,,>p+q +r,—2a;,,>0 for 1<i<n,
since p; + g; + r; < 0. This implies

-1, —u; — 24,4,

>1 for 1 <i<n.
pit g +r—2a,,,

That is, o > 1 for 1 £i <n. Let
n

u(a), = Y |a,-j—aia“+lai+lj| for 1<i<n.
j=i+1

Then for @, > 1 (1 < i < n) the following relation holds:

n
u(a); =|(1 - ai)aiH-I' + X Iaij T 0811840
j=i+2

n
=(1- oz,.)a,-,.+1 - Z (ai]- - aiaii+lai+1j)
j=i+2

n
=2(1 —a))a;;s, — ) (aij - aiaii+lai+lj)
j=itl

=(u; + 2a;;,,) + a(r; — 2a;;,,) > 0. (17)
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Thus from (13) and (17) we easily obtain for 1 < o; < @] (1 <i <n)
d(a), = l(a), —u(a),
=(1-1) —a(p, +q) — (u +2a,,,) = a(r — 26,,1)
=1 -1 —u —2a,.,) —ap +q, +r,—2a,,,) >0

Therefore, A(a) is a strictly diagonally dominant matrix, and thus the
following equality holds:

u(a);
p(T(a)) € 7V——— <1 for 1 :

d(ia)i — (), T

VAN
R
A
LB
o~
-
/

Hence, an application of Lemma 2 yields p(T(a)) <1 for 1 < o < o
1 <i<n) =

The behavior of the spectral radius of the proposed method as a function
of a, = a for the strictly diagonally dominant Z-matrix A is shown in Fig. L.
The variation of the spectral radius of the proposed method is extremely
small compared with that of the SOR method, as shown in Figure 1.
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Fic. 1. The spectral radii of the proposed method and the SOR method for
n = 10.
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Moreover, our convergence curve is relatively flat for a > [ However, it
is extremely difficult to compute an optimal «; directly from Theorem 4.
Therefore we propose a practical technique for its determination.

To find «;, we dictate that the equality holds in (17):

(u; + 2a;;,1) + o(r; ~ 2a,,,,) =0, I<i<n.
Solving this equation, we have

u; +2a;,,,
o, = ——————, 1<i<n (18)

26,4, — 1

4. NUMERICAL EXAMPLES AND CONCLUSION

We now test the validity of the determination (18). To do so, we consider
the following matrix:

1 ¢, € €3
Cy 1 c, ¢
€, €3 e e
A= : . ,
c; - - 1 ;G
Cy N 1 ¢y
€3 € €y C3 1

where ¢, = —1/n, ¢, = —1/(n + 1), and ¢; = —1/(n + 2). We set b
[see (1)] such that the solution is x7 = (1,2,...,n). Let the convergence
criterion be [[x**! — x¥||/|lx**!|| € 107%. We show CPU times and the
number of iterations in Table 1 for n = 20, 30, 50, and 100. For comparison,
we also show results for unpreconditioning (GS), the modified Gauss-Seidel
method (MGS) [1], and the adaptive Gauss-Seidel method (AGS) [4].

The iteration number for the proposed method is larger than that for AGS
[4], while the CPU time for the proposed method is smaller than that for
AGS. An optimum parameter w,, of the SOR method was obtained by
numerical computation. We also obtained the optimum parameter a,,, of the
proposed method by replacing a with ; (i = 1,2,..., n — 1) by numerical
computation.
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Finally, we consider a model problem [5, p. 202]. We use a standard
central-difference formula and a uniform mesh with length A = 1/m. Table
2 shows CPU times and the number of iterations for the model problem. We
adopt the theoretical value

2
Popr ™ T¥ sin( 7/m)

for the SOR method.

In this paper, we have proposed a new algorithm based on the Gauss-
Seidel method. As a result we have succeeded in improving the convergence
of this method. We have shown that the spectral radius of the proposed
method with a,,, is smaller than that of the SOR method.
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