
on from Web pages. The extracted data 
is put in tables. For an application, it is, however, often not sufficient to ex-
tract data from only a single site. Instead, data from a large number of sites 
are gathered in order to provide value-added services. In such cases, ex-
traction is only part of the story. The other part is the integration of the ex-
tracted data to produce a consistent and coherent database because differ-
ent sites typically use different data formats. Intuitively, integration means 
to match columns in different data tables that contain the same type of in-
formation (e.g., product names) and to match values that are semantically 
identical but represented differently in different Web sites (e.g., “Coke” 
and “Coca Cola”). Unfortunately, limited integration research has been 
done so far in this specific context. Much of the Web information integra-
tion research has been focused on the integration of Web query interfaces. 
This chapter will have several sections on their integration. However, 
many ideas developed are also applicable to the integration of the extracted 
data because the problems are similar.  

Web query interfaces are used to formulate queries to retrieve needed 
data from Web databases (called the deep Web). Figure 10.1 shows two 
query interfaces from two travel sites, expedia.com and vacation.com. The 
user who wants to buy an air ticket typically tries many sites to find the 
cheapest ticket. Given a large number of alternative sites, he/she has to ac-
cess each individually in order to find the best price, which is tedious. To 
reduce the manual effort, we can construct a global query interface that 
allows uniform access to disparate relevant sources. The user can then fill 
in his/her requirements in this single global interface and all the underlying 
sources (or databases) will be automatically filled and searched. The re-
trieved results from multiple sources also need to be integrated. Both inte-
gration problems, i.e., integration of query interfaces and integration of re-
turned results, are very challenging due to the heterogeneity of Web sites.  

Clearly, integration is not peculiar only to the Web. It was, in fact, first 
studied in the context of relational databases and data warehouse. Hence, 
this chapter first introduces most integration related concepts using tradi-
tional data models (e.g., relational) and then shows how the concepts are 
tailored to Web applications and how Web specific problems are handled.  

we studied data extracti
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Fig. 10.1. Two examples of Web query interfaces 

10.1 Introduction to Schema Matching  

Information/data integration has been studied in the database community 
since the early 1980s [40, 146, 455]. The fundamental problem is schema 
matching, which takes two (or more) database schemas to produce a map-
ping between elements (or attributes) of the two (or more) schemas that 
correspond semantically to each other. The objective is to merge the sche-
mas into a single global schema. This problem arises in building a global 
database that comprises several distinct but related databases. One applica-
tion scenario in a company is that each department has its database about 
customers and products that are related to the operations of the department. 
Each database is typically designed independently and possibly by differ-
ent people to optimize database operations required by the functions of the 
department. This results in different database schemas in different depart-
ments. However, to consolidate the data about customers or company op-
erations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases 
is needed. The integration problem is clearly also important on the Web as 
we discussed above, where the task is to integrate data from multiple sites.    

There is a large body of literature on the topic. Most techniques have 
been proposed to achieve semi-automatic matching in specific domains 
(see the surveys in [146, 265, 455, 491]). Unfortunately, the criteria and 
methods used in match operations are almost all based on domain heuris-
tics which are not easily formulated mathematically. Thus, to build a 
schema matching system, we need to produce mapping heuristics which 
reflect our understanding of what the user considers to be a good match.  

Schema matching is challenging for many reasons. First of all, schemas 
of identical concepts may have structural and naming differences. Schemas 
may model similar but not identical contents, and may use different data 
models. They may also use similar words for different meanings.  
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Although it may be possible for some specific applications, in general, it 
is not possible to fully automate all matches between two schemas because 
some semantic information that determines the matches between two 
schemas may not be formally specified or even documented. Thus, any 
automatic algorithm can only generate candidate matches that the user 
needs to verify, i.e., accept, reject or change. Furthermore, the user should 
also be allowed to specify matches for elements that the system is not able 
to find satisfactory match candidates. Let us see a simple example.  

Example 1: Consider two schemas, S1 and S2, representing two customer 
relations, Cust and Customer.  

S1  S2 
Cust Customer 

CNo CustID 
CompName Company 
FirstName Contact 
LastName Phone 

We can represent the mapping with a similarity relation, ≅, over the 
power sets of S1 and S2, where each pair in ≅ represents one element of the 
mapping. For our example schemas, we may obtain 

 Cust.CNo ≅ Customer.CustID 
 Cust.CompName ≅ Customer.Company 
 {Cust.FirstName, Cust.LastName} ≅ Customer.Contact ▀ 

There are various types of matching based on the input information [455]. 

1. Schema-level only matching: In this type of matching, only the schema 
information (e.g. names and data types) is considered. No data instance 
is available.  

2. Domain and instance-level only matching: In this type of match, only 
instance data and possibly the domain of each attribute are provided. No 
schema is available. Such cases occur quite frequently on the Web, 
where we need to match corresponding columns of the hidden schemas.  

3. Integrated matching of schema, domain and instance data: In this 
type of match, both schemas and instance data (possibly domain infor-
mation) are available. The match algorithm can exploit clues from all of 
them to perform matching.   

There are existing approaches to all above types of matching. We will fo-
cus on the first two types. The third type usually combines the results of 
techniques from the first two, which we discuss in Sect. 10.5. Before going 
to the details, we first discuss some pre-processing tasks that usually need 
to be done before matching.  
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10.2 Pre-Processing for Schema Matching 

For pre-processing, issues such as concatenated words, abbreviations, and 
acronyms are dealt with. That is, they need to be normalized before being 
used in matching [227, 358, 559].  

Prep 1 (Tokenization): This process breaks an item, which can be a 
schema element (attribute) or attribute value, into atomic words. Such 
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.) 
and case changes of letters are used to suggest the breakdown. For ex-
ample, we can break “fromCity” into “from City”, and “first-name” into 
“first name”. A domain dictionary of words is typically maintained to 
help the breakdown. Note that if “from”, “city”, “first” and “name” are 
not in the dictionary, they will be added to the dictionary. Existing dic-
tionary words are also utilized to suggest the breakdown. For example, 
“deptcity” will be split into “dept” and “city” if “city” is a word. The 
dictionary may be constructed automatically, which consists of all the 
individual words appeared in the given input used in matching, e.g., 
schemas, instance data and domains. The dictionary is updated as the 
processing progresses. However, the tokenization step has to be done 
with care. For example, we have “Baths” and “Bathrooms” if we split 
“Bath” with “Room” it could be a mistake because “Rooms” could have 
a very different meaning (the number of rooms in the house). To be 
sure, we need to ensure that “Bathroom” is not an English word, for 
which an online English dictionary may be employed.  

Prep 2 (Expansion): It expands abbreviations and acronyms to their full 
words, e.g., from “dept” to “departure”. The expansion is usually done 
based on the auxiliary information provided by the user or collected 
from other sources. Constraints may be imposed to ensure that the ex-
pansion is likely to be correct. For example, we may require that the 
word to be expanded is not in the English dictionary, with at least three 
letters, and having the same first letter as the expanding word. For ex-
ample, “CompName” is first converted to (Comp, Name) in tokeniza-
tion, and then “Comp” is expanded to “Company”. 

Prep 3 (Stopword removal and stemming): These are information re-
trieval pre-processing methods (see Chap. 6). They can be performed to 
attribute names and domain values. A domain specific stopword list 
may also be constructed manually. This step is useful especially in lin-
guistic based matching methods discussed below.  

Prep 4 (Standardization of words): Irregular words are standardized to a 
single form (e.g., using WordNet [175]), “colour”→ “color”, “Children” 
→ “Child”.  
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10.3 Schema-Level Matching 

A schema level matching algorithm relies on information about schema 
elements, such as name, description, data type and relationship types (such 
as part-of, is-a, etc.), constraints and schema structures. Before introduc-
ing some matching methods using such information, let us introduce the 
notion of match cardinality, which describes the number of elements in 
one schema that match the number of elements in the other schema.  

In general, given two schemas, S1 and S2, within a single match in the 
match relation one or more elements of S1 can match one or more elements 
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that 
one element of S1 corresponds to one element of S2, and 1:m means that 
one element of S1 corresponds to a set of m (m > 1) elements of S2.  

Example 2: Consider the following schemas:  
S1  S2 
Cust Customer 

CustomID CustID 
Name FirstName  
Phone LastName  

We can find the following 1:1 and 1:m matches:  
1:1 CustomID CustID 
1:m Name  FirstName, LastName ▀ 

m:1 match is similar to 1:m match; m:n match is considerably more com-
plex. An example of an m:n match is to match Cartesian coordinates with 
polar coordinates. There is little work on such complex matches. Most ex-
isting approaches are for 1:1 and 1:m matches.  

We now describe some general matching approaches that employ vari-
ous types of information available in schemas. There are two main types of 
information in schemas, natural language words and constraints. Thus, 
there are two main types of approaches to matching. 

10.3.1 Linguistic Approaches 

They are used to derive match candidates based on the names, comments 
or descriptions of schema elements [107, 133, 144, 145, 227, 358, 559].  

Name Match 

N1 − Equality of names: The same name in different schemas often has the 
same semantics.  
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N2 − Synonyms: The names of two elements from different schemas are 
synonyms, e.g., Customer ≅ Client. This requires the use of thesaurus 
and/or dictionaries such as WordNet. In many cases, domain depend-
ent or enterprise specific thesaurus and dictionaries are required.  

N3 − Equality of hypernyms: A is a hypernym of B if B is a kind of A. If 
X and Y have the same hypernym, they are likely to match. For exam-
ple, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus, we 
have Car ≅ vehicle, automobile ≅ vehicle, and Car ≅ automobile.  

N4 − Common substrings: Edit distance and similar pronunciation may be 
used. For example, CustomerID ≅ CustID, and ShipTo ≅ Ship2. 

N5 − Cosine similarity: Some names are natural language words or phrases 
(after pre-processing). Then, text similarity measures are useful. Co-
sine similarity is a popular similarity measure used in information re-
trieval (see Chap. 6). This method is also very useful for Web query 
interface integration since the labels of the schema elements are natu-
ral language words or phrases (see the query interfaces in Fig. 10.1) 

N6 − User provided name matches: The user may provide a domain de-
pendent match dictionary (or table), a thesaurus, and/or an ontology.  

Description Match 

In many databases, there are comments to schema elements, e.g.,  

S1: CNo // customer unique number 
S2: CustID // id number of a customer 

These comments can be compared based on the cosine similarity as well.  

D1 – Use the cosine similarity to compare comments after stemming and 
stopword removal.  

10.3.2 Constraint Based Approaches 

Constraints such as data types, value ranges, uniqueness, relationship types 
and cardinalities, etc., can be exploited in determining candidate matches 
[327, 358, 382, 424].  

C1: An equivalence or compatibility table for data types and keys that s-
pecifies compatibility constraints for two schema elements to match can 
be provided, e.g., string ≅ varchar, and (primary key) ≅ unique.  
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Example 3: Consider the following two schemas:  
S1 S2 
Cust Customer 

CNo: int, primary key CustID: int, unique 
CompName: varchar (60) Company: string 
CTname: varchar (15) Contact: string 
StartDate: date  Date: date 

Constraints can suggest that “CNo” matches “CustID”, and “StartDate” 
may match “Date”. “CompName” in S1 may match “Company” in S2 or 
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or 
“Contact” in S2. In both cases, the types match. Although in these two 
cases, we are unable to find a unique match, the approach helps limit the 
number of match candidates and may be combined with other matchers 
(e.g., name and instance matchers). For structured schemas, hierarchical 
relationships such as is-a and part-of relationships may be utilized to help 
match.  ▀ 

In the context of the Web, the constraint information above is often not 
explicitly available because Web databases are for general public who are 
unlikely to know what an int, string or varchar is. Thus, these types are 
never shown in Web pages. However, some information may be inferred 
from the domain or instance information, which we discuss next.  

10.4 Domain and Instance-Level Matching 

In this type of matching, value characteristics are exploited to match 
schema elements [53, 145, 327, 531, 558]. For example, the two attribute 
names may match according to the linguistic similarity, but they may have 
different domain value characteristics. Then, they may not be the same but 
homonyms. For example, Location in a real estate sell may mean the ad-
dress, but could also mean some specific locations, e.g., lakefront property, 
hillside property, etc.  

In many applications, data instances are available, which is often the 
case in the Web database context. In some applications, although the in-
stance information is not available, the domain information of each attrib-
ute may be obtained. This is the case for Web query interfaces. Some at-
tributes in the query interface contain a list of possible values (the domain) 
for the user to choose from. No type information is explicitly given, but it 
can often be inferred. We note that the set of value instances of an attribute 
can be treated in the similar way as a domain. Thus, we will only deal with 
domains below.  
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Let us look at two types of domains or types of values: simple domains 
and composite domains. The domain similarity of two attributes, A and B, 
is the similarity of their domains: dom(A) and dom(B).  

Definition (Simple Domain): A simple domain is a domain in which 
each value has only a single component, i.e., the value cannot be decom-
posed.  

A simple domain can be of any type, e.g., year, time, money, area, month, 
integer, real, string, etc. 

Data Type: If there is no type specification at the schema level, we iden-
tify the data type from the domain values. Even if there is a type specifica-
tion at the schema level for each attribute, we can still refine the type to 
find more characteristic patterns. For example, the ISBN number of a book 
may be specified as a string type in a given schema. However, due to its 
fixed format, it is easy to generate a characteristic pattern from a set of 
ISBN numbers, e.g., a regular expression. Other examples include phone 
numbers, post codes, money, etc. Such specialized patterns are more useful 
in matching compatible attribute types.  

We describe two approaches for type identification: semi-automatic 
[559, 563] and automatic [145, 327] approaches.  

Semi-automatic approach: This is done via pattern matching. The pattern 
for each type may be expressed as a regular expression, which is defined 
by a human expert. For example, the regular expression for the time type 
can be defined as “[0−9]{2}:[0−9]{2}" or “dd:dd” (d for digit from 0-9) 
which recognizes time of the form “03:15”. One can use such regular ex-
pressions to recognize integer, real, string, month, weekday, date, time, 
datetime (combination of date and time), etc. To identify the data type, we 
can simply apply all the regular expression patterns to determine the type.  

In some cases, the values themselves may contain some information on 
the type. For example, values that contain “$” or “US$” indicate the mone-
tary type. For all values that we cannot infer their types, we can assume 
their domains are of string type with an infinite cardinality.  

Automated approach: Machine learning techniques, e.g., grammar induc-
tion, may be used to learn the underlying grammar/pattern of the values of 
an attribute, and then use the grammar to match attribute values of the 
other schemas. This method is particularly useful for value of fixed format, 
e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or money-
related entries, if their regular expressions are not specified by the user.  
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The following methods may be used in matching: 
DI 1 – Data types are used as constraints. The method C1 above is appli-

cable here. If the data/domain types of two attributes are not compati-
ble, they should not be matched. We can use a table specifying the de-
gree of compatibility between a set of predefined generic data types, to 
which data types of schema elements are mapped in order to determine 
their similarity. 

DI 2 – For numerical data, value ranges, averages and variances can be 
computed to access the level of similarity.  

DI 3 – For categorical data, we can extract and compare the set of values in 
the two domains to check whether the two attributes from different 
schemas share some common values. For example, if an attribute from 
S1 contains many “Microsoft” entries and an attribute in S2 also contains 
some “Microsoft”’s, then we can propose them as a match candidate.  

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic 
ratios are also helpful. 

DI 5 – For textual data, information retrieval methods such as the cosine 
measure may be used to compare the similarity of all data values in the 
two attributes.  

DI 6 – Schema element name as value is another match indicator, which 
characterizes the cases where matches relate some data instances of a 
schema with a set of elements (attributes) in another schema. For exam-
ple, in the airfare domain one schema uses “Economy” and “Business” 
as instances (values) of the attribute “Ticket Class”, while in another in-
terface, “Economy” and “Business” are attributes with the Boolean 
domain (i.e., “Yes” and “No”). This kind of match can be detected if the 
words used in one schema as attribute names are among the values of 
attributes in another schema [133, 563]. 

Definition (Composite Domain and Attribute): A composite domain d 
of arity k is a set of ordered k-tuples, where the ith component of each tu-
ple is a value from the ith sub-domain of d, denoted as di. Each di is a sim-
ple domain. The arity of domain d is denoted as αrity(d) (= k). An attrib-
ute is composite if its domain is composite.  

A composite domain is usually indicated by its values that contained de-
limiters of various forms. The delimiters can be punctuation marks (such 
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as 
“to”. To detect a composite domain, we can use these delimiters to split a 
composite domain into simple sub-domains. In order to ensure correctness, 
we may also want to require that a majority of (composite) values can be 
consistently split into the same number of components. For example, the 
date can be expressed as a composite domain with MM/DD/YY.  
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DI 7 – The similarity of a simple domain and a composite domain is de-
termined by comparing the simple domain with each sub-domain of the 
composite domain. The similarity of composite domains is established 
by comparing their component sub-domains.  

We note that splitting a composite domain can be quite difficult in the Web 
context. For example, without sufficient auxiliary information (e.g., infor-
mation from other sites) it is not easy to split the following: “Dell desktop 
PC 1.5GHz 1GB RAM 30GB disk space”   

10.5 Combining Similarities 

Let us call a program that assesses the similarity of a pair of elements from 
two different schemas based on a particular match criterion a matcher. It 
is typically the case that the more indicators we have the better results we 
can achieve, because different matchers have their own advantages and 
also shortcomings. Combining schema-level and instance-level approach 
will produce better results than each type of approaches alone. This com-
bination can be done in various ways.  

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of 
a set of n matchers that compared two schema elements u (from S1) and v 
(from S2), one of the following strategies can be used to combine their 
similarity values.  

1. Max: This strategy returns the maximal similarity value of any matcher. 
It is thus optimistic. Let the combined similarity be CSim. Then 

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1) 

2. Weighted Sum: This strategy computes a weighted sum of similarity 
values of the individual matchers. It needs relative weights which corre-
spond to the expected importance of the matchers: 

CSim(u, v) = λ1*sim1(u, v) + λ2sim2(u, v) + … +λn*simn(u, v), (2) 

where λi is a weight coefficient, and usually determined empirically.  
3. Weighted Average: This strategy computes a weighted average of 

similarity values of the individual matchers. It also needs relative 
weights that correspond to the expected importance of the matchers. 

n
vuSimvuSimvuSimvuCSim nn ),(...),(),(),( 2211 λλλ +++

=
,
 (3) 

where λi is a weight coefficient and is determined experimentally.  
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4. Machine Learning: This approach uses a classification algorithm, e.g., 
a decision tree, a naïve Bayesian classifier, or SVM, to determine 
whether two schema elements match each other. In this case, the user 
needs to label a set of training examples, which is described by a set of 
attributes and a class. The attributes can be the similarities. Each train-
ing example thus represents the similarity values of a pair of schema 
elements. The class of the example is either Yes or No, which indicates 
whether the two elements match or not as decided by the user.  

There are many other possible approaches. In practice, which method to 
use involves a significant amount of experimentation and parameter 
tuning. Note that the combination can also be done in stages for different 
types of matches. For example, we can combine the instance based simi-
larities first using one method, e.g., Max, and then combine schema based 
similarities using another method, e.g., Weighted Average. After that, the 
final combined similarity computation may use Weighted Sum. 

10.6 1:m Match 

The approaches presented above are for 1:1 matches. For 1:m match, other 
techniques are needed [133, 563, 559]. There are mainly two types of 1:m 
matches.  
Part-of Type: Each relevant schema element on the many side is a part of 

the element on the one side. For example, in one schema, we may have 
an attribute called “Address”, while in another schema, we may have 
three attributes, “Street”, “City” and “State”. In this case, “Street”, 
“City” or “State” is a part of “Address”. That is, the combination of 
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.  

Is-a Type: Each relevant schema element on the many side is a specializa-
tion of the schema element on the one side. The content of the attribute 
on the one side is the union or sum of the contents of the attributes on 
the many side. For example, “HomePhone” and “CellPhone” in S2 are 
specializations of “Phone” in S1. Another example is the (number of) 
“Passengers” in Fig. 10.3 (page 397), and the (number of) “Adults”, 
the (number of) “Seniors”, and the (number of) “Children” in Fig. 10.1 
in the airline ticket domain.  

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we 
first check if it is a composite attribute as described above. If A is a com-
posite attribute, we find a subset of schema elements in S2 that has a 1:1 
correspondence with the sub-attributes of A. For a real application, we may 
need additional conditions to make the decision (see Sect. 10.8.1).  
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Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the do-
mains of the sub-attributes are typically different. In contrast, the identifi-
cation of is-a 1:m mappings of attributes requires that the domain of each 
corresponding sub-attribute be similar to that of the general attribute. 
Name matching of schema elements is useful here. For example, in the 
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name 
similarity can help decide 1:m mapping. However, this strategy alone is 
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors” 
and “Children” in S2 have no name similarity. Additional information is 
needed. We will show an example in Sect. 10.8.1.  

Using the auxiliary information provided by the user is also a possibil-
ity. It is not unreasonable to ask the user to provide some information 
about the domain. For example, a domain ontology that includes a set of 
concepts and their relationships such as the following (Fig. 10.2) will be of 
great help:  

Part-of(“street”, “address”) Is-a(“home phone”, “phone”) 
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)  
Part-of(“state”, “address”) Is-a(“office phone”, “phone”) 
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)  

Fig. 10.2. Part-of(X, Y) − X is a part of Y, and Is-a(X, Y) − X is a Y. 

10.7 Some Other Issues 

10.7.1  Reuse of Previous Match Results 

We have mentioned in several places that auxiliary information in addition 
to the input schemas and data instances, such as dictionaries, thesauri, and 
user-provided ontology information are very useful in schema matching. 
The past matching results can also be stored and reused for future matches 
[356, 455]. Reuse is important because many schemas are very similar to 
each other and to previously matched schemas. Given a new schema S to 
be matched with a set of existing schemas E, we may not need to match S 
with every existing schema in E. There are two slightly different scenarios:  

1. Matching of a large number of schemas: If we have a large number of 
schemas to match, we may not need to perform all pair-wise matches, 
which have n(n+1)/2 of them with n being the number of input sche-
mas. Since most schemas are very similar, the n(n+1)/2 number of 
matches are not necessary.  
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2. Incremental schema matching: In this scenario, given a set of schemas 
that has already been matched, when a new schema S needs to be 
matched with existing matched schemas E, we may not want to use S to 
match every schema in E using pair-wise matching. This is the same 
situation as the first case above. If the original match algorithm is not 
based on pair-wise match, we may not want to run the original algo-
rithm on all the schemas to just match this single schema with them. 

For both cases, we want to use old matches to facilitate the discovery of 
new matches. The key idea is to exploit the transitive property of similar-
ity relationship. For example, “Cname” in S1 matches “CustName” in S2 as 
they are both customer names. If “CTname” in the new schema S matches 
“Cname” in S1, we may conclude that “CTname” matches “CustName” in 
S2. The transitive property has also been used to deal with some difficult 
matching cases. For example, it may be difficult to map a schema element 
A directly to a schema element B, but easy to map both A and B to the 
schema element C in another schema. This helps us decide that A corre-
sponds to B [144, 559, 563].  

In the incremental case, we can also use a clustering-based method.  
For example, if we already have a large number of matches, we can group 
them into clusters and find a centroid to represent each cluster, in term of 
schema names and domains. When a new schema needs to be matched, the 
schema is compared with the centroid rather than with each individual 
schema in the cluster.  

10.7.2  Matching a Large Number of Schemas 

The techniques discussed so far are mainly for pair-wise matching of 
schemas. However, in many cases, we may have a large number of sche-
mas. This is the case for many Web applications because there are many 
Web databases in any domain or application. With a large number of 
schemas, new techniques can be applied. We do not need to depend solely 
on pair-wise matches. Instead, we can use statistical approaches such as 
data mining to find patterns, correlations and clusters to match the sche-
mas. In the next section, we will see two examples in which clustering and 
correlation methods are applied.   

10.7.3 Schema Match Results 

In pair-wise matching, for each element v in S2, the set of matching ele-
ments in S1 can be decided by one of the following methods [144].  
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1. Top N candidates: The top N elements of S1 that have the highest simi-
larities are chosen as match candidates. In most cases, N = 1 is the natu-
ral choice for 1:1 correspondences. Generally, N > 1 is useful in interac-
tive mode, i.e., the user can select among several match candidates.  

2. MaxDelta: The S1 element with the maximal similarity is determined as 
match candidate plus all S1 elements with a similarity differing at most 
by a tolerance value t, which can be specified either as an absolute or 
relative value. The idea is to return multiple match candidates when 
there are several S1 elements with almost the same similarity values. 

3. Threshold: All S1 elements with the final combined similarity values 
exceeding a given threshold t are selected. 

10.7.4  User Interactions 

Due to the difficulty of schema matching, extensive user interaction is of-
ten needed in building an accurate matching system for both parameter 
tuning and resolving uncertainties  

Building the Match System: There are typically many parameters and 
thresholds in an integration system, e.g., similarity values, weight coeffi-
cients, and decision thresholds, which are usually domain-specific or even 
attribute specific. Before the system is used to match other schemas, inter-
active experiments are needed to tune the parameters by trial-and-errors.  

After Matching: Although the parameters are fixed in the system build-
ing, their values may not be perfect. Matching mistakes and failures will 
still occur: (1) some matched attributes may be wrong (false positive); (2) 
some true matches may not be found (false negative). User interactions are 
needed to correct the situations and to confirm the correct matches.  

10.8 Integration of Web Query Interfaces 

The preceding discussions are generic to database integration and Web 
data integration. In this and the next sections, we focus on integration in 
the Web context. The Web consists of the surface Web and the deep 
Web. The surface Web can be browsed using any Web browser, while the 
deep Web consists of databases that can only be accessed through param-
eterized query interfaces. With the rapid expansion of the Web, there are 
now a huge number of deep web data sources. In almost any domain, one 
can find a large number of them, which are hosted by e-commerce sites. 
Each of such sources usually has a keyword based search engine or a query 
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interface that allows the user to fill in some information in order to retrieve 
the needed data. We have seen two query interfaces in Fig. 10.1 for finding 
airline tickets. We want to integrate multiple interfaces in order to provide 
the user a global query interface [153, 227] so that he/she does not need 
to manually query each individual source to obtain more complete infor-
mation. Only the global interface needs to be filled with the required in-
formation. The individual interfaces are filled and searched automatically.  

We focus on query interface integration mainly because there is exten-
sive research in this area, although the returned instance data integration is 
also of great importance and perhaps even more important due to the fact 
that the number of sites that provide such structured data is huge and most 
of them do not have query interfaces but only keyword search or can only 
be browsed by users (see Chap. 9).  

Since query interfaces are different from traditional database schemas, 
we first define a schema model.  

Schema Model of Query Interfaces: In each domain, there is a set of 
concepts C = {c1, c2, …, cn} that represents the essential information of the 
domain. These concepts are used in query interfaces to enable the user to 
restrict the search for some specific instances or objects of the domain. A 
particular query interface uses a subset of the concepts S ⊆ C. A concept i 
in S may be represented in the interface with a set of attributes (or fields) 
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single 
attribute. Each attribute is labeled with a word or phrase, called the label 
of the attribute, which is visible to the user. Each attribute may also have a 
set of possible values that the user can use in search, which is its domain.  

All the attributes with their labels in a query interface are called the 
schema of the query interface [227, 608]. Each attribute also has a name 
in the HTML code. The name is attached to a TEXTBOX (which takes the 
user input). However, this name is not visible to the user. It is attached to 
the input value of the attribute and returned to the server as the attribute of 
the input value. The name is often an acronym that is less useful than the 
label for schema matching. For practical schema integration, we are not 
concerned with the set of concepts but only the label and name of each at-
tribute and its domain.  

Most ideas for schema matching in traditional databases are applicable 
to Web query interfaces as the schema of a query interface is similar to a 
schema in databases. However, there are also some important differences 
[67, 92].  

1. Limited use of acronyms and abbreviations: Data displayed in Web 
pages are for the general public to view and must be easy to understand. 
Hence, the use of acronyms and abbreviations is limited to those very 
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obvious ones. Enterprise-specific acronyms and abbreviations seldom 
appear. In the case of a company database, abbreviations are frequently 
used, which are often hard to understand by human users and difficult to 
analyze by automated systems. To a certain extent, this feature makes 
information integration on the Web easier.  

2. Limited vocabulary: In the same domain, there are usually a limited 
number of essential attributes that describe each object in the domain. 
For example, in the book domain, we have the title, author, publisher, 
ISBN number, etc. For each attribute, there is usually limited ways to 
express the attribute. The chosen label (describing a data attribute, e.g., 
“departure city”) needs to be short, and easily understood by the general 
public. Therefore, there are not many ways to express the same attrib-
utes. Limited vocabulary also makes statistical approaches possible.  

3. A large number of similar databases: There are often a large number 
of sites that offer the same services or sell the same products, which re-
sult in a large number of query interfaces and make it possible to use 
statistical methods. This is not the case in a company because the num-
ber of related databases is small. Integration of databases from multiple 
companies seldom happens.  

4. Additional structure: The attributes of a Web interface are usually or-
ganized in some meaningful ways. For example, related attributes are 
grouped and put together physically (e.g., “first name” and “last name” 
are usually next to each other), and there may also be a hierarchical or-
ganization of attributes. Such structures also help integration as we will 
see later. In the case of databases, attributes usually have no structure.  

Due to these differences, schema matching of query interfaces can exploit 
new methods. For example, data mining techniques can be employed as we 
will see in the next few sub-sections. Traditional schema matching ap-
proaches in the database context are usually based on pair-wise matching.  

Similar to schema integration, query interface integration also requires 
mapping of corresponding attributes of all the query interfaces.  

Example 4: For the two query interfaces in Fig. 10.3, the attribute corre-
spondences are: 

Interface 1 (S1) Interface 2 (S2) 
 Leaving from   From 
 Going to  To 
 Departure date Departure date 
 Return date Return date 
 Passengers: Number of tickets 
 Time 
 Preferred cabin 
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Fig. 10.3. Two query interfaces from the domain of airline ticket reservation 

The last two attributes from Interface 1 do not have matching attributes in 
Interface 2.  ▀ 

The problem of generating the mapping is basically the problem of iden-
tifying synonyms in the application domain. However, it is important to 
note that the synonyms here are domain dependent. A general-purpose se-
mantic lexicon such as WordNet or any thesaurus is not sufficient for the 
identification of most domain-specific synonyms. For example, it is diffi-
cult to infer from WordNet or any thesaurus that “Passengers” is synony-
mous to “Number of tickets” in the context of airline ticket reservation. 
Domain-specific lexicons are not generally available as they are expensive 
to build. In this section, we discuss three query interface matching tech-
niques. We also describe a method for building a global interface. 

10.8.1 A Clustering Based Approach 

This technique is a simplified version of the work in [559]. Given a large 
set of schemas from query interfaces in the same application domain, this 
technique utilizes a data mining method, clustering, to find attribute 
matches of all interfaces. Three types of information are employed, 
namely, attribute labels, attribute names and value domains. Let the set of 
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:  

1. Pre-processing the data. It uses the methods given in Sect. 10.2.  
2. Computing all pair-wise attribute similarities of u (∈ Si) and v (∈ Sj), i ≠ 

j. This produces a similarity matrix.  
3. Identify initial 1:m matches. 
4. Cluster schema elements based on the similarity matrix. This step dis-

covers 1:1 matches.  
5. Generate the final 1:m matches of attributes. 

We now discuss each step in turn except the first step.  
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Computing all Pair-Wise Attribute Similarities: Let u be an attribute of 
Si and v be an attribute of Sj (i ≠ j). This step computes all linguistic simi-
larities (denoted by LingSim(u, v)) and domain similarities (denoted 
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is: 

),,(),(),( vuDomSimvuLingSimvuAS dsls ∗+∗= λλ  (4) 

where λls and λds are weight coefficients reflecting the relative importance 
of each component similarity.  

The linguistic similarity is based on both attribute labels and attribute 
names, which give two similarity values, lSim(u, v) and nSim(u, v), repre-
senting label and name similarities respectively. Both similarities are com-
puted using the cosine measure as discussed in N5 of Sect. 10.3.1. The two 
similarities are then combined through a linear combination method simi-
lar to Equation (4) above.   

Domain similarity of two simple domains dv and du is computed based 
on the data type similarity (denoted by typeSim(dv, du) and values similar-
ity (denoted by valueSim(dv, du)). The final DomSim is again a linear com-
bination of the two values. For the type similarity computation, if the types 
of domains dv and du are the same, typeSim(dv, du) = 1 and 0 otherwise. If 
typeSim(dv, du) = 0, then valueSim(dv, du) = 0.   

For two domains dv and du of the same type, the algorithm further evalu-
ates their value similarity. Let us consider two character string domains. 
Let the set of values in dv be {t1, t2, …, tn} and the set of values in du be 
{q1, q2, …, qk}. valueSim(dv, du) is computed as follows:  

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine 
measure with one value from each domain.  

2. Choose the pair with the maximum similarity among all pairs and delete 
the corresponding two values from dv and du. For a pair to be consid-
ered, its similarity must be greater than a threshold valueτ.  

3. Repeat step 2 on all remaining values in the domains until no pair of 
values has a similarity greater thanτ.  

Let the pairs of values chosen be P. valueSim(dv, du) is then computed 
using the Dice function [136]:  

.
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For two numeric domains, their value similarity is the proportion of the 
overlapping range of the domains. For an attribute whose domain is un-
known, it is assumed that its domain is dissimilar to the domain of any 
other attribute, be it finite or infinite. 
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Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings, 
the technique exploits the hierarchical organization of the interfaces. The 
hierarchical organization is determined using the layout and the proximity 
of attributes as they are likely to be physically close to each other.  

Part-of type: To identify the initial set of aggregate 1:m mappings of at-
tributes, it first finds all composite attributes in all interfaces as discussed 
in Sect. 10.4. For each composite attribute e in S, in every interface other 
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1) 
with the same parent p, such that the following conditions hold: 

1. fi's are siblings, i.e., they share the same parent p. The sibling informa-
tion is derived from the physical proximity in the interface.  

2. The label of the parent p of fi's is highly similar to the label of e. 
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.  

If there exists such a f in interface X, a 1:m mapping of the part-of type 
is identified between e and attributes in f.  

Is-a type: The identification of is-a 1:m attribute mappings requires that the 
domain of each corresponding sub-attribute on the m side be similar to that 
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1, 
f2, … fr} (r > 1) in another interface X, that meets the following conditions: 

1. fi's are siblings of the same parent p, and p does not have any children 
other than fi's. 

2. The label of the parent p is highly similar to the label of h. 
3. The domain of each fi is highly similar to the domain of h. 

If the conditions are met, a 1:m mapping of the is-a type is identified be-
tween h and attributes in f. 

Cluster the Schema Elements based on the Similarity Matrix: Step 2 
produces a similarity matrix M. Let the total number of simple domains in 
the set of all given query interfaces S be w. We then have a w×w symmet-
ric similarity matrix. M[i, j] is the aggregated similarity of two attributes i 
and j. For attributes in the same interface, M[i, j] is infinite, which indicate 
that they should not be put together into a cluster.  

The clustering algorithm used is the hierarchical agglomerative cluster-
ing algorithm. The stopping criterion is a similarity threshold. That is, 
when there is no pair of clusters has the similarity greater than the thresh-
old, the algorithm stops. Each output cluster contains a set of 1:1 attribute 
mappings from different interfaces. 
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Obtain Additional 1:m Mapping: The preliminary set of 1:m correspon-
dences may not have found all such mappings. The clustering results may 
suggest additional 1:m mappings. The transitivity property can be used 
here. For example, assume that a composite attribute e maps to two attrib-
utes f1 and f2 in another interface in step 3 and the clustering results suggest 
that f1 and f2 map to h1 and h2 in yet another interface. Then, e also matches 
h1 and h2. 

10.8.2 A Correlation Based Approach 

This technique also makes use of a large number of interfaces. It is based 
on the technique in [229]. For pre-processing, the methods discussed in 
Sect. 10.2 are applied. The approach is based on co-occurrences of schema 
attributes and the following observations:  

1. In an interface, some attributes may be grouped together to form a big-
ger concept. For example, “first name” and “last name” compose the 
name of a person. This is called the grouping relationship, denoted by 
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.  

2. An attribute group rarely co-occurs in schemas with their synonym at-
tribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last 
name} and {name} are negatively correlated. They represent 2:1 
match. Note that a group may contain only one attribute.  

Based on the two observations, a correlation-based method to schema 
matching is in order. Negatively correlated groups represent synonym 
groups or matching groups.  

Given a set of input schemas S = {S1, S2, …, Sn} in the same application 
domain, where each schema Si is a transaction of attributes, we want to 
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 = 
gj2 = … = gjw, where each gjk is an positively correlated attribute group and 

i
n
ijk Sg 1=⊆ U . Each mj represents the synonym relationship of attribute 

groups gj1 ,..., gjw. The approach for finding M consists of three steps: 

1. Group discovery: This step mines co-occurring or positively correlated 
attribute groups. It is done by first finding the set of all 2-attribute 
groups (i.e., each group contains only two attributes), denoted by L2, 
that are positively correlated according to the input schema set S (one 
data scan is needed). A 2-attribute group {a, b} is considered positively 
correlated if cp(a, b) is greater than a threshold value τp, where cp is a 
positive correlation measure. The algorithm then extends 2-attribute 



10.8 Integration of Web Query Interfaces      401 

groups to 3-attribute groups L3. A 3-attribute group g is considered posi-
tively correlated if every 2-attribute subset of g is in L2. In general, a k-
attribute group g is in Lk if every (k−1)-attribute sub-group of g is in Lk-1. 
This is similar to candidate generation in the Apriori algorithm for asso-
ciation rule mining (see Chap. 2). However, the method here does not 
scan the data after all 2-attribute groups have been generated.  

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which con-
tains all 2-attribute groups that are discovered from the data. {a, b, c} is 
in L3, but {a, c, d} is not because {a, d} is not in L2.  ▀ 

2. Match discovery: This step mines negatively correlated groups includ-
ing those singleton groups. Each discovered positively correlated group 
is first added into those transactions in S that contain some attributes of 
the group. That is, for a schema Si and a group g, if Si ∩ g ≠ ∅, then Si = 
Si ∪ {g}. The final augmented transaction set S is then used to mine 
negatively correlated groups; which are potential matching groups. The 
procedure for finding all negatively correlated groups is exactly the 
same as the above procedure for finding positively correlated groups. 
The only difference is that a different measure is used to determine 
negative correlations, which will be discussed shortly. A 2-attribute 
group {a, b} is considered negatively correlated if cn(a, b) is greater than 
a threshold value τn, where cn is a negative correlation measure. 

3. Matching selection: The discovered negative correlations may contain 
conflicts due to the idiosyncrasy of the data. Some correlations may also 
subsume others. For instance, in the book domain, the mining result may 
contain both {author} = {first name, last name}, denoted by m1 and {sub-
ject} = {first name, last name}, denoted by m2. Clearly, m1 is correct, but 
m2 is not. Since {subject} = {author} is not discovered, which should be 
due to transitivity of synonyms, m1 and m2 cannot be both correct. This 
causes a conflict. A match mj semantically subsumes a match mk, de-
noted by mj f  mk, if all the semantic relationships in mk are contained 
in mj. For instance, {arrival city} = {destination} = {to} f  {arrival city} = 
{destination} because the synonym relationship in the second match is 
subsumed by the first one. Also, {author} = {first name, last name} f  
{author} = {first name} because the second match is part of the first. 

We now present a method to choose the most confident and consistent 
matches and to remove possibly false ones. Between conflicting matches, 
we want to select the most negatively correlated one because it is more 
likely to be a group of genuine synonyms. Thus, a score function is 
needed, which is defined as the maximum negative correlation values of all 
2-attribute groups in the match:  
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score(mj, cn) = max cn(gjr, gjt), gjr, gjt ∈ mj, jr ≠ jt. (6) 

Combining the score function and semantic subsumption, the matches 
are ranked based on the following rules:  

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.  
2. If score(mj, cn) = score(mk, cn) and mj f  mk, mj is ranked higher than mk. 
3. Otherwise, mj and mk are ranked arbitrarily.  

Figure 10.4 gives the MatchingSelection() function. After the highest 
ranked match mt in an iteration is selected, the inconsistent parts in the re-
maining matches are removed (lines 6−10). The final output is the selected 
n-ary complex matches with no conflict. Note that ranking is redone in 
each iteration instead of sorting all the matches in the beginning, because 
after removing some conflicting parts, the ranking may change.  

Function MatchingSelection(M, cn)  
1  R ← ∅    // R stores the selected n-ary complex matches  
2  while M ≠ ∅ do 
4  Let mt be the highest ranked match in M  //select the top ranked match 
5  R ← R ∪ {mt}  
6  for each mj ∈ M do  
7  mj ← mj – mt;  // remove the conflicting part  
8  if |mj | < 2 then  
9 M ← M – {mj} // delete mj if it contains no matching 
10 endfor 
11 endwhile 
12 return R  

Fig. 10.4. The MatchingSelection function 

Correlation Measures: There are many existing correlation tests in statis-
tic, e.g., χ2 test and lift, etc. However, it was found that these methods were 
not suitable for this application. Hence, a new negative correlation measure 
corrn for two attributes Ap and Aq was proposed, which is called the H-
measure. Let us use a contingency table (Fig. 10.5) to define it. fij in the 
figure is the co-occurrence frequency count of the corresponding cell:    

 Ap ¬Ap  
Aq f11 f10 f1+ 
¬Aq f01 f00 f0+ 

 f+1 f+0 f++ 

Fig. 10.5. Contingency table for test of correlation 
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10.8.3 An Instance Based Approach 

This method is based on the technique given in [531]. It matches query in-
terfaces and also the query results. It assumes that: 

1. a global schema (GS) for the application domain is given, which repre-
sents the key attributes of the domain, and  

2. a number of sample data instances under the domain global schema are 
also available.  

This technique only finds 1:1 attribute matches. We use IS to denote the 
query interface schema and RS the returned result schema. Let us use an 
example to introduce the key observation exploited in this technique. Fig-
ure 10.6 shows an example of an online bookstore. The part labeled Data 
Attributes is the global schema with six attributes {Title, Author, Pub-
lisher, ISBN, Publication Date, Format}. The part labeled Interface is the 
query interface with five input elements/attributes. When the keyword 
query “Harry Potter” is submitted through the Title attribute in the inter-
face, a result page is returned which contains the answer to the query (la-
beled Result Page), which shows three book instances.  

Three types of semantic correspondence represented by different lines 
(dotted, dashed and solid) are also shown in Fig. 10.6. They are respec-
tively, the correspondence between attributes of the global schema and 
those of the query interface, the correspondence between the attributes of 
the global schema and those of the instance values in the result page, and 
the correspondence between attributes in the query interface and those of 
the instance values in the result pages. 

Observation: When a proper query is submitted to the right element of the 
query interface, the query words are very likely to reappear in the corre-
sponding attribute of the returned results. However, if an improper query is 
submitted to the Web database there are often few or no returned results.  
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Fig. 10.6. An example of a Web database with its query interface and a result page 

In the example shown in Fig. 10.6, the site retrieves only three matches 
for the query “Harry Potter” when submitted through the “Author” attribute, 
while it retrieves 228 matches for the same query when submitted to the Ti-
tle attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there is 
no returned result. Intuitively, the number of times that query words reap-
pear in the returned results gives us a good indication what attributes 
match in the interface schema, the global schema, and the result schema.  

To obtain the number of reappearing occurrences, each value from the 
given instances can be submitted to each interface element while keeping 
default values for the other elements. For each TEXTBOX element in the 
query interface, all attribute values from the given instances are tried ex-
haustively. For each SELECT element, its domain values are limited to a 
set of fixed options. Then, an option similar to a value in the given in-
stances is found and submitted. Here, “similar” means that the attribute 
value and the option value have at least one common word. Note that this 
approach assumes that a data extraction system is available to produce a 
table from a returned result page (see Chap. 9). Each column has a hidden 
attribute (i.e., of the result schema).  

By counting the number of times that the query words re-occur in each 
column of the result table, a 3-dimensional occurrence matrix (OM) can 
be constructed. The three dimensions are: global schema (GS) attributes, 
query interface schema (IS) attributes and result schema (RS) attributes. 
Each cell OM[i, j, k] contains the sum of the occurrence counts obtained 
from kth attribute of RS of all the sample query words from the ith attrib-
ute of GS when the query words are submitted to the jth attribute of IS.  

Refine Search  

 

Your Search: 

Harry Potter 
Title:  

 
Author:  

any 
Format:  

ISBN:  

 

Search 

Query Interface 

…

Format

ISBN

Publish Date

Publisher

Author

Title

Data Attributes 

Search Results 

A Comprehensive Guide to Harry Potter 
Paperback | Jan 2001|Carson Dellosa Publishing company, Incor-
porated 

Beatrix Potter to Harry Potter: Portraits of Children’s 
Writers 
Julia Eccleshare            Hardcover | Sep 2002 | National Portrait Gallery 
God, Devil and Harry Potter 
John Killinger               Hardcover | Dec 2002 | St. Martin’s Press, LLC 

Result Page
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Intra-Site Schema Matching: We now briefly describe how to match at-
tributes in IS and GS, IS and RS, and GS and RS based on the projected 
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the 
number of attributes in the global schema, M is the number of elements in 
the interface schema, and L is the number of columns in the result table. 
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct match-
ing highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS = 
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.  

We observe from Fig. 10.7 that the highest occurrence count may not 
represent a correct match. For example, the cell for AuthorIS and Publish-
erGS (534) has the highest value in the matrix but AuthorIS and PublisherGS 
do not correspond to each other. In general, for a cell mij, its value in com-
parison with those of other cells in its row i and its column j is more im-
portant than its absolute count.  

 TitleGS AuthorGS PublisherGS ISBNGS

AuthorIS 93 498 534 0 
TitleIS 451 345 501 0 

PublisherIS 62 184 468 2 
KeywordIS 120 248 143 275 

ISBNIS 0 0 0 258 

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted   

The algorithm in [531] uses the mutual information measure (MI) to 
determine correct matches. The mutual information, which measures the 
mutual dependence of two variables, is defined as follows:  

.
)Pr()Pr(

),Pr(log),Pr(),( 2 yx
yxyxyxMI =  (9) 

In our context, x and y are attributes from IS and GS respectively. The 
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the 
OMIG(M×N) matrix.  

The algorithm simply computes the mutual information of every pair of 
attributes based on the counts in the matrix such as the one in Fig. 10.7. A 
corresponding mutual information matrix (called MI matrix) is then 
constructed (not shown here). To find 1-1 matches of the two schemas, the 
algorithm chooses each cell in the MI matrix whose value is the largest 
among all the values in the same row and the same column. The 
corresponding attributes of the cell forms a final match. 

The paper also has a similar method for finding matches from multiple 
Web databases, which is called inter-site schema matching.  
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10.9 Constructing a Unified Global Query Interface 

Once a set of query interfaces in the same domain is matched, we can 
automatically construct a well-designed global query interface that con-
tains all the (or the most significant) distinct attributes of all source inter-
faces. To build a “good” global interface, three requirements are identified 
in [154].  

1. Structural appropriateness: As noted earlier, elements of query inter-
faces are usually organized in groups (logical units) of related attributes 
so that semantically related attributes are placed in close vicinity. For 
example, “Adults”, “Seniors”, and “Children” of the interfaces shown in 
Fig. 10.1 are placed together. In addition, multiple related groups of at-
tributes are organized as super-groups (e.g., “Where and when do you 
want to go?” in Fig. 10.1). This leads to a hierarchical structure for in-
terfaces (see Fig. 10.8), where a leaf in the tree corresponds to an attrib-
ute in the interface, an internal node corresponds to a (super)group of at-
tributes and the order among the sibling nodes within the tree resembles 
the order of attributes in the interface (from left to right). The global 
query interface should reflect this hierarchical structure of the domain.  

2. Lexical appropriateness: Labels of elements should be chosen so as to 
convey the meaning of each individual element and to underline the hi-
erarchical organization of attributes (e.g., the three attributes together 
with the parent attribute “Number of Passengers” in Fig. 10.1).  

3. Instance appropriateness: The domain values for each attribute in the 
global interface must contain the values of the source interfaces.  

We will give a high level description of the algorithms in [153, 154] that 
build the global interface by merging given interfaces based on the above 
three requirements. The input to the algorithms consists of (1) a set of 
query interfaces and (2) a global mapping of corresponding attributes in 
the query interfaces. It is assumed that mapping is organized in clusters as 
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes 
from different interfaces. We note that the domain model discovery idea in 
[227] can be seen as another approach to building global interfaces.   

10.9.1 Structural Appropriateness and the Merge Algorithm 

Structural appropriateness means to satisfy grouping constraints and ances-
tor-descendant relationship constraints of the attributes in individual inter-
faces. These constraints guide the merging algorithm to produce the global 
interface, which has one attribute for each cluster.  
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Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global 
query interface (GS). 

Grouping Constraints: Recall that semantically related attributes within 
an interface are usually grouped together. Grouping constraints require that 
these attributes should also appear together in the global interface.  

As the global interface has an attribute for each cluster, the problem is to 
partition all the clusters into semantically meaningful subsets (or groups), 
which are employed to organize attributes in the global interface. For in-
stance, for the example in Fig. 10.8, the following sets of clusters are pro-
duced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay, 
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a 
cluster representing X (e.g., c_deptCity and c_destCity are clusters repre-
senting departure cities and destination cities, respectively). 

The partition is determined by considering each maximal set of adjacent 
sibling leaves in the schema tree of each source interface whose parent is 
not the root. The leaves whose parent is the root are not considered be-
cause no reliable information can be derived. These structural constraints 
are collected from all source interfaces in order to infer the way that attrib-
utes are organized in the global interface. All those sets (or groups) of clus-
ters whose intersection is not empty are merged to form the final groups, 
which are sequences of attribute clusters that preserve adjacency con-
straints in all interfaces. For example, {c_Adult, c_Senior, c_Child}, 
{c_Adult, c_Child}, {c_Adult, c_Child, c_Infant} are merged to produce 
the final group, [c_Senior, c_Adult, c_Child, c_Infant], which preserves all 
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adjacency constraints. Such a sequence does not always exist. In such a 
case, a sequence that accommodates most adjacency constraints is sought. 

Ancestor-Descendant Relationships: In hierarchical modeling of data the 
same information can be represented in various ways. For instance, the re-
lationship between “Authors” and “Books” can be captured as either ”Au-
thors” having “Books”, which makes “Books” a descendant of “Authors”, 
or “Books” having “Authors”, which makes “Books” an ancestor of “Au-
thors”. This, however, was not found to be a problem [153]. No such con-
flicting cases were found from a study of 300 query interfaces in eight ap-
plication domains.  

Merge Algorithm: The merge algorithm merges two interfaces at a time 
to produce the final global interface schema. One of them is the current 
global interface G. At the beginning, the schema tree with the most levels 
is chosen as the initial global schema G. Then each other interface is se-
quentially merged with G. During each merge, G is refined and expanded.  
The algorithm works in a bottom-up fashion. The merging between leaves 
is produced based on the clusters. The mapping between internal nodes is 
based on mappings of their children, which may be either leaf nodes or in-
ternal nodes. To meaningfully insert leaves without a match in the correct 
position, the algorithm relies on groups computed above to infer each leaf 
position. In our example, we start by merging S1 and S3. S1 is the initial 
global interface G. Within each group, it is easy to see the position of “In-
fant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right). “Cabin” is 
inserted at the end since leaf children of the root are discarded before 
merging and then added as children of the root of the integrated schema 
tree. Additional details can be found in [153]. 

10.9.2 Lexical Appropriateness 

After the interfaces are merged, the attributes in the integrated interface 
need to be labeled so that (1) the labels of the attributes within a group are 
consistent and (2) the labels of the internal nodes are consistent with re-
spect to themselves and to the leaf nodes [154]. 

It can be observed in the query interface of Fig. 10.1 that between the 
labels of the attributes grouped together there are certain commonalities. 
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas 
“Leaving” and “Returning” are gerunds. Ideally, the groups within the 
global interface should have the same uniformity property. Since the at-
tributes may be from different interfaces, a group of attributes within the 
unified interface might not correspond to any group in a single interface, 
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which makes it hard to assign consistent labels. To deal with the problem, 
a strategy called intersect-and-union is used, which finds groups with 
non-empty intersection from different interfaces and then unions them.  

Example 6: Consider the example of the three interfaces in Fig. 10.8 with 
their passenger related groups organized as the table below. It is easy to 
see a systematic way of building a consistent solution.  

Cluster/Interface c_Adult  c_Senior  c_Child c_Infant 
S1 Adults Seniors Children  
S2 Adults  Children  
S3 Adult  Child Infant 

Notice that by combining the labels given by S1 and S2 a consistent nam-
ing assignment, namely, “Seniors”, “Adults” and “Children”, can be 
achieved because the two sets share labels (i.e., “Adults” and “Children”) 
that are consistent with the labels in both sets. This strategy can be itera-
tively applied until a label is assigned to each attribute in the group.  

To deal with minor variations, more relaxed rules for combining attrib-
ute labels can be used, e.g., requiring that the set of tokens of the labels to 
be equal after removal of stopwords (e.g., “Number of Adults” has the 
same set of tokens as “Adults Number”, i.e. {Number, Adults}) and stem-
ming. If a consistent solution for the entire group cannot be found, consis-
tent solutions for subsets of attributes are constructed. 

The assignment of consistent labels to the internal nodes uses a set of 
rules [154] that tries to select a label for each node in such a way that it is 
generic enough to semantically cover the set of its descendant leaf nodes. 
For example, the label “Travelers” is obtained in the integrated interface in 
Fig. 10.8 as follows. First, we know that “Passengers” is more generic 
than “Number of Passengers” and thus semantically covers both {Seniors, 
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be 
a hypernym of “Passengers“ (using WordNet) and thus semantically cov-
ers the union of {Seniors, Adults, Children} and {Adults, Children, Infant} 
which is the desired set {Seniors, Adults, Children, Infant} 

10.9.3 Instance Appropriateness 

Finally, we discuss how to determine the domain for each attribute in the 
global schema (interface). A domain has two aspects: the type and the set 
of values. To determine the domain type of a global attribute, compatibility 
rules are needed [230]. For instance, if all attributes in a cluster have a fi-
nite (infinite) domain then the global attribute will have a finite (infinite) 
domain. If in the cluster there are both finite and infinite domains, then the 
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domain of the global attribute will be hybrid (i.e., users can either select 
from a list of pre-compiled values or fill in a new value). As a case in 
point, the “Adults” attribute on the global interface derived from the two 
interface in Fig. 10.1 will have a finite domain, whereas the attribute “Go-
ing to” will have a hybrid domain. 

The set of domain values of a global attribute is given by the union of 
the domains of the attributes in the cluster. Computing the union is not al-
ways easy. For example, the values of the domains may have different 
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same 
value may be specified in various ways (e.g., “Chicago O’Hare” vs. 
“ORD”). Currently, the problem is dealt with using user-provided auxiliary 
thesauruses [230].  
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