
on from Web pages. The extracted data
is put in tables. For an application, it is, however, often not sufficient to ex-
tract data from only a single site. Instead, data from a large number of sites
are gathered in order to provide value-added services. In such cases, ex-
traction is only part of the story. The other part is the integration of the ex-
tracted data to produce a consistent and coherent database because differ-
ent sites typically use different data formats. Intuitively, integration means
to match columns in different data tables that contain the same type of in-
formation (e.g., product names) and to match values that are semantically
identical but represented differently in different Web sites (e.g., “Coke”
and “Coca Cola”). Unfortunately, limited integration research has been
done so far in this specific context. Much of the Web information integra-
tion research has been focused on the integration of Web query interfaces.
This chapter will have several sections on their integration. However,
many ideas developed are also applicable to the integration of the extracted
data because the problems are similar.

Web query interfaces are used to formulate queries to retrieve needed
data from Web databases (called the deep Web). Figure 10.1 shows two
query interfaces from two travel sites, expedia.com and vacation.com. The
user who wants to buy an air ticket typically tries many sites to find the
cheapest ticket. Given a large number of alternative sites, he/she has to ac-
cess each individually in order to find the best price, which is tedious. To
reduce the manual effort, we can construct a global query interface that
allows uniform access to disparate relevant sources. The user can then fill
in his/her requirements in this single global interface and all the underlying
sources (or databases) will be automatically filled and searched. The re-
trieved results from multiple sources also need to be integrated. Both inte-
gration problems, i.e., integration of query interfaces and integration of re-
turned results, are very challenging due to the heterogeneity of Web sites.

Clearly, integration is not peculiar only to the Web. It was, in fact, first
studied in the context of relational databases and data warehouse. Hence,
this chapter first introduces most integration related concepts using tradi-
tional data models (e.g., relational) and then shows how the concepts are
tailored to Web applications and how Web specific problems are handled.

we studied data extracti

Abstract

Integration of the extracted data to produce
 a consistent and coherent database

382 10 Information Integration

Fig. 10.1. Two examples of Web query interfaces

10.1 Introduction to Schema Matching

Information/data integration has been studied in the database community
since the early 1980s [40, 146, 455]. The fundamental problem is schema
matching, which takes two (or more) database schemas to produce a map-
ping between elements (or attributes) of the two (or more) schemas that
correspond semantically to each other. The objective is to merge the sche-
mas into a single global schema. This problem arises in building a global
database that comprises several distinct but related databases. One applica-
tion scenario in a company is that each department has its database about
customers and products that are related to the operations of the department.
Each database is typically designed independently and possibly by differ-
ent people to optimize database operations required by the functions of the
department. This results in different database schemas in different depart-
ments. However, to consolidate the data about customers or company op-
erations across the organization in order to have a more complete under-
standing of its customers and to better serve them, integration of databases
is needed. The integration problem is clearly also important on the Web as
we discussed above, where the task is to integrate data from multiple sites.

There is a large body of literature on the topic. Most techniques have
been proposed to achieve semi-automatic matching in specific domains
(see the surveys in [146, 265, 455, 491]). Unfortunately, the criteria and
methods used in match operations are almost all based on domain heuris-
tics which are not easily formulated mathematically. Thus, to build a
schema matching system, we need to produce mapping heuristics which
reflect our understanding of what the user considers to be a good match.

Schema matching is challenging for many reasons. First of all, schemas
of identical concepts may have structural and naming differences. Schemas
may model similar but not identical contents, and may use different data
models. They may also use similar words for different meanings.

10.1 Introduction to Schema Matching 383

Although it may be possible for some specific applications, in general, it
is not possible to fully automate all matches between two schemas because
some semantic information that determines the matches between two
schemas may not be formally specified or even documented. Thus, any
automatic algorithm can only generate candidate matches that the user
needs to verify, i.e., accept, reject or change. Furthermore, the user should
also be allowed to specify matches for elements that the system is not able
to find satisfactory match candidates. Let us see a simple example.

Example 1: Consider two schemas, S1 and S2, representing two customer
relations, Cust and Customer.

S1 S2
Cust Customer

CNo CustID
CompName Company
FirstName Contact
LastName Phone

We can represent the mapping with a similarity relation, ≅, over the
power sets of S1 and S2, where each pair in ≅ represents one element of the
mapping. For our example schemas, we may obtain

 Cust.CNo ≅ Customer.CustID
 Cust.CompName ≅ Customer.Company
 {Cust.FirstName, Cust.LastName} ≅ Customer.Contact ▀

There are various types of matching based on the input information [455].

1. Schema-level only matching: In this type of matching, only the schema
information (e.g. names and data types) is considered. No data instance
is available.

2. Domain and instance-level only matching: In this type of match, only
instance data and possibly the domain of each attribute are provided. No
schema is available. Such cases occur quite frequently on the Web,
where we need to match corresponding columns of the hidden schemas.

3. Integrated matching of schema, domain and instance data: In this
type of match, both schemas and instance data (possibly domain infor-
mation) are available. The match algorithm can exploit clues from all of
them to perform matching.

There are existing approaches to all above types of matching. We will fo-
cus on the first two types. The third type usually combines the results of
techniques from the first two, which we discuss in Sect. 10.5. Before going
to the details, we first discuss some pre-processing tasks that usually need
to be done before matching.

384 10 Information Integration

10.2 Pre-Processing for Schema Matching

For pre-processing, issues such as concatenated words, abbreviations, and
acronyms are dealt with. That is, they need to be normalized before being
used in matching [227, 358, 559].

Prep 1 (Tokenization): This process breaks an item, which can be a
schema element (attribute) or attribute value, into atomic words. Such
items are usually concatenated words. Delimiters (such as “-”, “_”, etc.)
and case changes of letters are used to suggest the breakdown. For ex-
ample, we can break “fromCity” into “from City”, and “first-name” into
“first name”. A domain dictionary of words is typically maintained to
help the breakdown. Note that if “from”, “city”, “first” and “name” are
not in the dictionary, they will be added to the dictionary. Existing dic-
tionary words are also utilized to suggest the breakdown. For example,
“deptcity” will be split into “dept” and “city” if “city” is a word. The
dictionary may be constructed automatically, which consists of all the
individual words appeared in the given input used in matching, e.g.,
schemas, instance data and domains. The dictionary is updated as the
processing progresses. However, the tokenization step has to be done
with care. For example, we have “Baths” and “Bathrooms” if we split
“Bath” with “Room” it could be a mistake because “Rooms” could have
a very different meaning (the number of rooms in the house). To be
sure, we need to ensure that “Bathroom” is not an English word, for
which an online English dictionary may be employed.

Prep 2 (Expansion): It expands abbreviations and acronyms to their full
words, e.g., from “dept” to “departure”. The expansion is usually done
based on the auxiliary information provided by the user or collected
from other sources. Constraints may be imposed to ensure that the ex-
pansion is likely to be correct. For example, we may require that the
word to be expanded is not in the English dictionary, with at least three
letters, and having the same first letter as the expanding word. For ex-
ample, “CompName” is first converted to (Comp, Name) in tokeniza-
tion, and then “Comp” is expanded to “Company”.

Prep 3 (Stopword removal and stemming): These are information re-
trieval pre-processing methods (see Chap. 6). They can be performed to
attribute names and domain values. A domain specific stopword list
may also be constructed manually. This step is useful especially in lin-
guistic based matching methods discussed below.

Prep 4 (Standardization of words): Irregular words are standardized to a
single form (e.g., using WordNet [175]), “colour”→ “color”, “Children”
→ “Child”.

10.3 Schema-Level Matching 385

10.3 Schema-Level Matching

A schema level matching algorithm relies on information about schema
elements, such as name, description, data type and relationship types (such
as part-of, is-a, etc.), constraints and schema structures. Before introduc-
ing some matching methods using such information, let us introduce the
notion of match cardinality, which describes the number of elements in
one schema that match the number of elements in the other schema.

In general, given two schemas, S1 and S2, within a single match in the
match relation one or more elements of S1 can match one or more elements
of S2. We thus have 1:1, 1:m, m:1 and m:n matches. 1:1 match means that
one element of S1 corresponds to one element of S2, and 1:m means that
one element of S1 corresponds to a set of m (m > 1) elements of S2.

Example 2: Consider the following schemas:
S1 S2
Cust Customer

CustomID CustID
Name FirstName
Phone LastName

We can find the following 1:1 and 1:m matches:
1:1 CustomID CustID
1:m Name FirstName, LastName ▀

m:1 match is similar to 1:m match; m:n match is considerably more com-
plex. An example of an m:n match is to match Cartesian coordinates with
polar coordinates. There is little work on such complex matches. Most ex-
isting approaches are for 1:1 and 1:m matches.

We now describe some general matching approaches that employ vari-
ous types of information available in schemas. There are two main types of
information in schemas, natural language words and constraints. Thus,
there are two main types of approaches to matching.

10.3.1 Linguistic Approaches

They are used to derive match candidates based on the names, comments
or descriptions of schema elements [107, 133, 144, 145, 227, 358, 559].

Name Match

N1 − Equality of names: The same name in different schemas often has the
same semantics.

386 10 Information Integration

N2 − Synonyms: The names of two elements from different schemas are
synonyms, e.g., Customer ≅ Client. This requires the use of thesaurus
and/or dictionaries such as WordNet. In many cases, domain depend-
ent or enterprise specific thesaurus and dictionaries are required.

N3 − Equality of hypernyms: A is a hypernym of B if B is a kind of A. If
X and Y have the same hypernym, they are likely to match. For exam-
ple, “Car” is-a “vehicle” and “automobile” is-a “vehicle”. Thus, we
have Car ≅ vehicle, automobile ≅ vehicle, and Car ≅ automobile.

N4 − Common substrings: Edit distance and similar pronunciation may be
used. For example, CustomerID ≅ CustID, and ShipTo ≅ Ship2.

N5 − Cosine similarity: Some names are natural language words or phrases
(after pre-processing). Then, text similarity measures are useful. Co-
sine similarity is a popular similarity measure used in information re-
trieval (see Chap. 6). This method is also very useful for Web query
interface integration since the labels of the schema elements are natu-
ral language words or phrases (see the query interfaces in Fig. 10.1)

N6 − User provided name matches: The user may provide a domain de-
pendent match dictionary (or table), a thesaurus, and/or an ontology.

Description Match

In many databases, there are comments to schema elements, e.g.,

S1: CNo // customer unique number
S2: CustID // id number of a customer

These comments can be compared based on the cosine similarity as well.

D1 – Use the cosine similarity to compare comments after stemming and
stopword removal.

10.3.2 Constraint Based Approaches

Constraints such as data types, value ranges, uniqueness, relationship types
and cardinalities, etc., can be exploited in determining candidate matches
[327, 358, 382, 424].

C1: An equivalence or compatibility table for data types and keys that s-
pecifies compatibility constraints for two schema elements to match can
be provided, e.g., string ≅ varchar, and (primary key) ≅ unique.

10.4 Domain and Instance-Level Matching 387

Example 3: Consider the following two schemas:
S1 S2
Cust Customer

CNo: int, primary key CustID: int, unique
CompName: varchar (60) Company: string
CTname: varchar (15) Contact: string
StartDate: date Date: date

Constraints can suggest that “CNo” matches “CustID”, and “StartDate”
may match “Date”. “CompName” in S1 may match “Company” in S2 or
“Contact” in S2. Likewise, “CTname” in S1 may match “Company” or
“Contact” in S2. In both cases, the types match. Although in these two
cases, we are unable to find a unique match, the approach helps limit the
number of match candidates and may be combined with other matchers
(e.g., name and instance matchers). For structured schemas, hierarchical
relationships such as is-a and part-of relationships may be utilized to help
match. ▀

In the context of the Web, the constraint information above is often not
explicitly available because Web databases are for general public who are
unlikely to know what an int, string or varchar is. Thus, these types are
never shown in Web pages. However, some information may be inferred
from the domain or instance information, which we discuss next.

10.4 Domain and Instance-Level Matching

In this type of matching, value characteristics are exploited to match
schema elements [53, 145, 327, 531, 558]. For example, the two attribute
names may match according to the linguistic similarity, but they may have
different domain value characteristics. Then, they may not be the same but
homonyms. For example, Location in a real estate sell may mean the ad-
dress, but could also mean some specific locations, e.g., lakefront property,
hillside property, etc.

In many applications, data instances are available, which is often the
case in the Web database context. In some applications, although the in-
stance information is not available, the domain information of each attrib-
ute may be obtained. This is the case for Web query interfaces. Some at-
tributes in the query interface contain a list of possible values (the domain)
for the user to choose from. No type information is explicitly given, but it
can often be inferred. We note that the set of value instances of an attribute
can be treated in the similar way as a domain. Thus, we will only deal with
domains below.

388 10 Information Integration

Let us look at two types of domains or types of values: simple domains
and composite domains. The domain similarity of two attributes, A and B,
is the similarity of their domains: dom(A) and dom(B).

Definition (Simple Domain): A simple domain is a domain in which
each value has only a single component, i.e., the value cannot be decom-
posed.

A simple domain can be of any type, e.g., year, time, money, area, month,
integer, real, string, etc.

Data Type: If there is no type specification at the schema level, we iden-
tify the data type from the domain values. Even if there is a type specifica-
tion at the schema level for each attribute, we can still refine the type to
find more characteristic patterns. For example, the ISBN number of a book
may be specified as a string type in a given schema. However, due to its
fixed format, it is easy to generate a characteristic pattern from a set of
ISBN numbers, e.g., a regular expression. Other examples include phone
numbers, post codes, money, etc. Such specialized patterns are more useful
in matching compatible attribute types.

We describe two approaches for type identification: semi-automatic
[559, 563] and automatic [145, 327] approaches.

Semi-automatic approach: This is done via pattern matching. The pattern
for each type may be expressed as a regular expression, which is defined
by a human expert. For example, the regular expression for the time type
can be defined as “[0−9]{2}:[0−9]{2}" or “dd:dd” (d for digit from 0-9)
which recognizes time of the form “03:15”. One can use such regular ex-
pressions to recognize integer, real, string, month, weekday, date, time,
datetime (combination of date and time), etc. To identify the data type, we
can simply apply all the regular expression patterns to determine the type.

In some cases, the values themselves may contain some information on
the type. For example, values that contain “$” or “US$” indicate the mone-
tary type. For all values that we cannot infer their types, we can assume
their domains are of string type with an infinite cardinality.

Automated approach: Machine learning techniques, e.g., grammar induc-
tion, may be used to learn the underlying grammar/pattern of the values of
an attribute, and then use the grammar to match attribute values of the
other schemas. This method is particularly useful for value of fixed format,
e.g., zip codes, phone numbers, zip codes, ISBNs, date entries, or money-
related entries, if their regular expressions are not specified by the user.

10.4 Domain and Instance-Level Matching 389

The following methods may be used in matching:
DI 1 – Data types are used as constraints. The method C1 above is appli-

cable here. If the data/domain types of two attributes are not compati-
ble, they should not be matched. We can use a table specifying the de-
gree of compatibility between a set of predefined generic data types, to
which data types of schema elements are mapped in order to determine
their similarity.

DI 2 – For numerical data, value ranges, averages and variances can be
computed to access the level of similarity.

DI 3 – For categorical data, we can extract and compare the set of values in
the two domains to check whether the two attributes from different
schemas share some common values. For example, if an attribute from
S1 contains many “Microsoft” entries and an attribute in S2 also contains
some “Microsoft”’s, then we can propose them as a match candidate.

DI 4 – For alphanumeric data, string-lengths and alphabetic/non-alphabetic
ratios are also helpful.

DI 5 – For textual data, information retrieval methods such as the cosine
measure may be used to compare the similarity of all data values in the
two attributes.

DI 6 – Schema element name as value is another match indicator, which
characterizes the cases where matches relate some data instances of a
schema with a set of elements (attributes) in another schema. For exam-
ple, in the airfare domain one schema uses “Economy” and “Business”
as instances (values) of the attribute “Ticket Class”, while in another in-
terface, “Economy” and “Business” are attributes with the Boolean
domain (i.e., “Yes” and “No”). This kind of match can be detected if the
words used in one schema as attribute names are among the values of
attributes in another schema [133, 563].

Definition (Composite Domain and Attribute): A composite domain d
of arity k is a set of ordered k-tuples, where the ith component of each tu-
ple is a value from the ith sub-domain of d, denoted as di. Each di is a sim-
ple domain. The arity of domain d is denoted as αrity(d) (= k). An attrib-
ute is composite if its domain is composite.

A composite domain is usually indicated by its values that contained de-
limiters of various forms. The delimiters can be punctuation marks (such
as “,”, “-”, “/”, “_”, etc) and white spaces and some special words such as
“to”. To detect a composite domain, we can use these delimiters to split a
composite domain into simple sub-domains. In order to ensure correctness,
we may also want to require that a majority of (composite) values can be
consistently split into the same number of components. For example, the
date can be expressed as a composite domain with MM/DD/YY.

390 10 Information Integration

DI 7 – The similarity of a simple domain and a composite domain is de-
termined by comparing the simple domain with each sub-domain of the
composite domain. The similarity of composite domains is established
by comparing their component sub-domains.

We note that splitting a composite domain can be quite difficult in the Web
context. For example, without sufficient auxiliary information (e.g., infor-
mation from other sites) it is not easy to split the following: “Dell desktop
PC 1.5GHz 1GB RAM 30GB disk space”

10.5 Combining Similarities

Let us call a program that assesses the similarity of a pair of elements from
two different schemas based on a particular match criterion a matcher. It
is typically the case that the more indicators we have the better results we
can achieve, because different matchers have their own advantages and
also shortcomings. Combining schema-level and instance-level approach
will produce better results than each type of approaches alone. This com-
bination can be done in various ways.

Given the set of similarity values, sim1(u, v), sim2(u, v), …, simn(u, v), of
a set of n matchers that compared two schema elements u (from S1) and v
(from S2), one of the following strategies can be used to combine their
similarity values.

1. Max: This strategy returns the maximal similarity value of any matcher.
It is thus optimistic. Let the combined similarity be CSim. Then

CSim(u, v) = max{sim1(u, v), sim2(u, v), …, simn(u, v)} (1)

2. Weighted Sum: This strategy computes a weighted sum of similarity
values of the individual matchers. It needs relative weights which corre-
spond to the expected importance of the matchers:

CSim(u, v) = λ1*sim1(u, v) + λ2sim2(u, v) + … +λn*simn(u, v), (2)

where λi is a weight coefficient, and usually determined empirically.
3. Weighted Average: This strategy computes a weighted average of

similarity values of the individual matchers. It also needs relative
weights that correspond to the expected importance of the matchers.

n
vuSimvuSimvuSimvuCSim nn),(...),(),(),(2211 λλλ +++

=
,
 (3)

where λi is a weight coefficient and is determined experimentally.

10.6 1:m Match 391

4. Machine Learning: This approach uses a classification algorithm, e.g.,
a decision tree, a naïve Bayesian classifier, or SVM, to determine
whether two schema elements match each other. In this case, the user
needs to label a set of training examples, which is described by a set of
attributes and a class. The attributes can be the similarities. Each train-
ing example thus represents the similarity values of a pair of schema
elements. The class of the example is either Yes or No, which indicates
whether the two elements match or not as decided by the user.

There are many other possible approaches. In practice, which method to
use involves a significant amount of experimentation and parameter
tuning. Note that the combination can also be done in stages for different
types of matches. For example, we can combine the instance based simi-
larities first using one method, e.g., Max, and then combine schema based
similarities using another method, e.g., Weighted Average. After that, the
final combined similarity computation may use Weighted Sum.

10.6 1:m Match

The approaches presented above are for 1:1 matches. For 1:m match, other
techniques are needed [133, 563, 559]. There are mainly two types of 1:m
matches.
Part-of Type: Each relevant schema element on the many side is a part of

the element on the one side. For example, in one schema, we may have
an attribute called “Address”, while in another schema, we may have
three attributes, “Street”, “City” and “State”. In this case, “Street”,
“City” or “State” is a part of “Address”. That is, the combination of
“Street”, “City” or “State” forms “Address”. Thus, it is a 1:m match.

Is-a Type: Each relevant schema element on the many side is a specializa-
tion of the schema element on the one side. The content of the attribute
on the one side is the union or sum of the contents of the attributes on
the many side. For example, “HomePhone” and “CellPhone” in S2 are
specializations of “Phone” in S1. Another example is the (number of)
“Passengers” in Fig. 10.3 (page 397), and the (number of) “Adults”,
the (number of) “Seniors”, and the (number of) “Children” in Fig. 10.1
in the airline ticket domain.

Identifying Part-of 1:m Matches: For each attribute A in interface S1, we
first check if it is a composite attribute as described above. If A is a com-
posite attribute, we find a subset of schema elements in S2 that has a 1:1
correspondence with the sub-attributes of A. For a real application, we may
need additional conditions to make the decision (see Sect. 10.8.1).

392 10 Information Integration

Identify Is-a 1:m Matches: In the case of part-of 1:m mappings, the do-
mains of the sub-attributes are typically different. In contrast, the identifi-
cation of is-a 1:m mappings of attributes requires that the domain of each
corresponding sub-attribute be similar to that of the general attribute.
Name matching of schema elements is useful here. For example, in the
case of “Phone” in S1 and “HomePhone” and “CellPhone” in S2, the name
similarity can help decide 1:m mapping. However, this strategy alone is
usually not sufficient, e.g., “Passengers” in S1 and “Adults”, “Seniors”
and “Children” in S2 have no name similarity. Additional information is
needed. We will show an example in Sect. 10.8.1.

Using the auxiliary information provided by the user is also a possibil-
ity. It is not unreasonable to ask the user to provide some information
about the domain. For example, a domain ontology that includes a set of
concepts and their relationships such as the following (Fig. 10.2) will be of
great help:

Part-of(“street”, “address”) Is-a(“home phone”, “phone”)
Part-of(“city”, “address”) Is-a(“cell phone”, “phone”)
Part-of(“state”, “address”) Is-a(“office phone”, “phone”)
Part-of(“country”, “address”) Is-a(“day phone”, “phone”)

Fig. 10.2. Part-of(X, Y) − X is a part of Y, and Is-a(X, Y) − X is a Y.

10.7 Some Other Issues

10.7.1 Reuse of Previous Match Results

We have mentioned in several places that auxiliary information in addition
to the input schemas and data instances, such as dictionaries, thesauri, and
user-provided ontology information are very useful in schema matching.
The past matching results can also be stored and reused for future matches
[356, 455]. Reuse is important because many schemas are very similar to
each other and to previously matched schemas. Given a new schema S to
be matched with a set of existing schemas E, we may not need to match S
with every existing schema in E. There are two slightly different scenarios:

1. Matching of a large number of schemas: If we have a large number of
schemas to match, we may not need to perform all pair-wise matches,
which have n(n+1)/2 of them with n being the number of input sche-
mas. Since most schemas are very similar, the n(n+1)/2 number of
matches are not necessary.

10.7 Some Other Issues 393

2. Incremental schema matching: In this scenario, given a set of schemas
that has already been matched, when a new schema S needs to be
matched with existing matched schemas E, we may not want to use S to
match every schema in E using pair-wise matching. This is the same
situation as the first case above. If the original match algorithm is not
based on pair-wise match, we may not want to run the original algo-
rithm on all the schemas to just match this single schema with them.

For both cases, we want to use old matches to facilitate the discovery of
new matches. The key idea is to exploit the transitive property of similar-
ity relationship. For example, “Cname” in S1 matches “CustName” in S2 as
they are both customer names. If “CTname” in the new schema S matches
“Cname” in S1, we may conclude that “CTname” matches “CustName” in
S2. The transitive property has also been used to deal with some difficult
matching cases. For example, it may be difficult to map a schema element
A directly to a schema element B, but easy to map both A and B to the
schema element C in another schema. This helps us decide that A corre-
sponds to B [144, 559, 563].

In the incremental case, we can also use a clustering-based method.
For example, if we already have a large number of matches, we can group
them into clusters and find a centroid to represent each cluster, in term of
schema names and domains. When a new schema needs to be matched, the
schema is compared with the centroid rather than with each individual
schema in the cluster.

10.7.2 Matching a Large Number of Schemas

The techniques discussed so far are mainly for pair-wise matching of
schemas. However, in many cases, we may have a large number of sche-
mas. This is the case for many Web applications because there are many
Web databases in any domain or application. With a large number of
schemas, new techniques can be applied. We do not need to depend solely
on pair-wise matches. Instead, we can use statistical approaches such as
data mining to find patterns, correlations and clusters to match the sche-
mas. In the next section, we will see two examples in which clustering and
correlation methods are applied.

10.7.3 Schema Match Results

In pair-wise matching, for each element v in S2, the set of matching ele-
ments in S1 can be decided by one of the following methods [144].

394 10 Information Integration

1. Top N candidates: The top N elements of S1 that have the highest simi-
larities are chosen as match candidates. In most cases, N = 1 is the natu-
ral choice for 1:1 correspondences. Generally, N > 1 is useful in interac-
tive mode, i.e., the user can select among several match candidates.

2. MaxDelta: The S1 element with the maximal similarity is determined as
match candidate plus all S1 elements with a similarity differing at most
by a tolerance value t, which can be specified either as an absolute or
relative value. The idea is to return multiple match candidates when
there are several S1 elements with almost the same similarity values.

3. Threshold: All S1 elements with the final combined similarity values
exceeding a given threshold t are selected.

10.7.4 User Interactions

Due to the difficulty of schema matching, extensive user interaction is of-
ten needed in building an accurate matching system for both parameter
tuning and resolving uncertainties

Building the Match System: There are typically many parameters and
thresholds in an integration system, e.g., similarity values, weight coeffi-
cients, and decision thresholds, which are usually domain-specific or even
attribute specific. Before the system is used to match other schemas, inter-
active experiments are needed to tune the parameters by trial-and-errors.

After Matching: Although the parameters are fixed in the system build-
ing, their values may not be perfect. Matching mistakes and failures will
still occur: (1) some matched attributes may be wrong (false positive); (2)
some true matches may not be found (false negative). User interactions are
needed to correct the situations and to confirm the correct matches.

10.8 Integration of Web Query Interfaces

The preceding discussions are generic to database integration and Web
data integration. In this and the next sections, we focus on integration in
the Web context. The Web consists of the surface Web and the deep
Web. The surface Web can be browsed using any Web browser, while the
deep Web consists of databases that can only be accessed through param-
eterized query interfaces. With the rapid expansion of the Web, there are
now a huge number of deep web data sources. In almost any domain, one
can find a large number of them, which are hosted by e-commerce sites.
Each of such sources usually has a keyword based search engine or a query

10.8 Integration of Web Query Interfaces 395

interface that allows the user to fill in some information in order to retrieve
the needed data. We have seen two query interfaces in Fig. 10.1 for finding
airline tickets. We want to integrate multiple interfaces in order to provide
the user a global query interface [153, 227] so that he/she does not need
to manually query each individual source to obtain more complete infor-
mation. Only the global interface needs to be filled with the required in-
formation. The individual interfaces are filled and searched automatically.

We focus on query interface integration mainly because there is exten-
sive research in this area, although the returned instance data integration is
also of great importance and perhaps even more important due to the fact
that the number of sites that provide such structured data is huge and most
of them do not have query interfaces but only keyword search or can only
be browsed by users (see Chap. 9).

Since query interfaces are different from traditional database schemas,
we first define a schema model.

Schema Model of Query Interfaces: In each domain, there is a set of
concepts C = {c1, c2, …, cn} that represents the essential information of the
domain. These concepts are used in query interfaces to enable the user to
restrict the search for some specific instances or objects of the domain. A
particular query interface uses a subset of the concepts S ⊆ C. A concept i
in S may be represented in the interface with a set of attributes (or fields)
fi1, fi2, ..., fik. In most cases, each concept is only represented with a single
attribute. Each attribute is labeled with a word or phrase, called the label
of the attribute, which is visible to the user. Each attribute may also have a
set of possible values that the user can use in search, which is its domain.

All the attributes with their labels in a query interface are called the
schema of the query interface [227, 608]. Each attribute also has a name
in the HTML code. The name is attached to a TEXTBOX (which takes the
user input). However, this name is not visible to the user. It is attached to
the input value of the attribute and returned to the server as the attribute of
the input value. The name is often an acronym that is less useful than the
label for schema matching. For practical schema integration, we are not
concerned with the set of concepts but only the label and name of each at-
tribute and its domain.

Most ideas for schema matching in traditional databases are applicable
to Web query interfaces as the schema of a query interface is similar to a
schema in databases. However, there are also some important differences
[67, 92].

1. Limited use of acronyms and abbreviations: Data displayed in Web
pages are for the general public to view and must be easy to understand.
Hence, the use of acronyms and abbreviations is limited to those very

396 10 Information Integration

obvious ones. Enterprise-specific acronyms and abbreviations seldom
appear. In the case of a company database, abbreviations are frequently
used, which are often hard to understand by human users and difficult to
analyze by automated systems. To a certain extent, this feature makes
information integration on the Web easier.

2. Limited vocabulary: In the same domain, there are usually a limited
number of essential attributes that describe each object in the domain.
For example, in the book domain, we have the title, author, publisher,
ISBN number, etc. For each attribute, there is usually limited ways to
express the attribute. The chosen label (describing a data attribute, e.g.,
“departure city”) needs to be short, and easily understood by the general
public. Therefore, there are not many ways to express the same attrib-
utes. Limited vocabulary also makes statistical approaches possible.

3. A large number of similar databases: There are often a large number
of sites that offer the same services or sell the same products, which re-
sult in a large number of query interfaces and make it possible to use
statistical methods. This is not the case in a company because the num-
ber of related databases is small. Integration of databases from multiple
companies seldom happens.

4. Additional structure: The attributes of a Web interface are usually or-
ganized in some meaningful ways. For example, related attributes are
grouped and put together physically (e.g., “first name” and “last name”
are usually next to each other), and there may also be a hierarchical or-
ganization of attributes. Such structures also help integration as we will
see later. In the case of databases, attributes usually have no structure.

Due to these differences, schema matching of query interfaces can exploit
new methods. For example, data mining techniques can be employed as we
will see in the next few sub-sections. Traditional schema matching ap-
proaches in the database context are usually based on pair-wise matching.

Similar to schema integration, query interface integration also requires
mapping of corresponding attributes of all the query interfaces.

Example 4: For the two query interfaces in Fig. 10.3, the attribute corre-
spondences are:

Interface 1 (S1) Interface 2 (S2)
 Leaving from From
 Going to To
 Departure date Departure date
 Return date Return date
 Passengers: Number of tickets
 Time
 Preferred cabin

10.8 Integration of Web Query Interfaces 397

Fig. 10.3. Two query interfaces from the domain of airline ticket reservation

The last two attributes from Interface 1 do not have matching attributes in
Interface 2. ▀

The problem of generating the mapping is basically the problem of iden-
tifying synonyms in the application domain. However, it is important to
note that the synonyms here are domain dependent. A general-purpose se-
mantic lexicon such as WordNet or any thesaurus is not sufficient for the
identification of most domain-specific synonyms. For example, it is diffi-
cult to infer from WordNet or any thesaurus that “Passengers” is synony-
mous to “Number of tickets” in the context of airline ticket reservation.
Domain-specific lexicons are not generally available as they are expensive
to build. In this section, we discuss three query interface matching tech-
niques. We also describe a method for building a global interface.

10.8.1 A Clustering Based Approach

This technique is a simplified version of the work in [559]. Given a large
set of schemas from query interfaces in the same application domain, this
technique utilizes a data mining method, clustering, to find attribute
matches of all interfaces. Three types of information are employed,
namely, attribute labels, attribute names and value domains. Let the set of
interface schemas be {S1, S2, …, Sn}. The technique works in five steps:

1. Pre-processing the data. It uses the methods given in Sect. 10.2.
2. Computing all pair-wise attribute similarities of u (∈ Si) and v (∈ Sj), i ≠

j. This produces a similarity matrix.
3. Identify initial 1:m matches.
4. Cluster schema elements based on the similarity matrix. This step dis-

covers 1:1 matches.
5. Generate the final 1:m matches of attributes.

We now discuss each step in turn except the first step.

398 10 Information Integration

Computing all Pair-Wise Attribute Similarities: Let u be an attribute of
Si and v be an attribute of Sj (i ≠ j). This step computes all linguistic simi-
larities (denoted by LingSim(u, v)) and domain similarities (denoted
DomSim(u, v)). The aggregated similarity (denoted by AS(u, v)) is:

),,(),(),(vuDomSimvuLingSimvuAS dsls ∗+∗= λλ (4)

where λls and λds are weight coefficients reflecting the relative importance
of each component similarity.

The linguistic similarity is based on both attribute labels and attribute
names, which give two similarity values, lSim(u, v) and nSim(u, v), repre-
senting label and name similarities respectively. Both similarities are com-
puted using the cosine measure as discussed in N5 of Sect. 10.3.1. The two
similarities are then combined through a linear combination method simi-
lar to Equation (4) above.

Domain similarity of two simple domains dv and du is computed based
on the data type similarity (denoted by typeSim(dv, du) and values similar-
ity (denoted by valueSim(dv, du)). The final DomSim is again a linear com-
bination of the two values. For the type similarity computation, if the types
of domains dv and du are the same, typeSim(dv, du) = 1 and 0 otherwise. If
typeSim(dv, du) = 0, then valueSim(dv, du) = 0.

For two domains dv and du of the same type, the algorithm further evalu-
ates their value similarity. Let us consider two character string domains.
Let the set of values in dv be {t1, t2, …, tn} and the set of values in du be
{q1, q2, …, qk}. valueSim(dv, du) is computed as follows:

1. Calculate all pair-wise value (i.e., (ti, qj)) similarities using the cosine
measure with one value from each domain.

2. Choose the pair with the maximum similarity among all pairs and delete
the corresponding two values from dv and du. For a pair to be consid-
ered, its similarity must be greater than a threshold valueτ.

3. Repeat step 2 on all remaining values in the domains until no pair of
values has a similarity greater thanτ.

Let the pairs of values chosen be P. valueSim(dv, du) is then computed
using the Dice function [136]:

.
||||

||2),(
uv

uv dd
PddvalueSim
+

= (5)

For two numeric domains, their value similarity is the proportion of the
overlapping range of the domains. For an attribute whose domain is un-
known, it is assumed that its domain is dissimilar to the domain of any
other attribute, be it finite or infinite.

10.8 Integration of Web Query Interfaces 399

Identify a Preliminary Set of 1:m Mappings: To identify 1:m mappings,
the technique exploits the hierarchical organization of the interfaces. The
hierarchical organization is determined using the layout and the proximity
of attributes as they are likely to be physically close to each other.

Part-of type: To identify the initial set of aggregate 1:m mappings of at-
tributes, it first finds all composite attributes in all interfaces as discussed
in Sect. 10.4. For each composite attribute e in S, in every interface other
than S, denoted by X, it looks for a set of attributes f = {f1, f2, … fr} (r > 1)
with the same parent p, such that the following conditions hold:

1. fi's are siblings, i.e., they share the same parent p. The sibling informa-
tion is derived from the physical proximity in the interface.

2. The label of the parent p of fi's is highly similar to the label of e.
3. The domains of fi’s have a 1-to-1 mapping with a subset of the sub-

domains of e based on the high domain similarities.

If there exists such a f in interface X, a 1:m mapping of the part-of type
is identified between e and attributes in f.

Is-a type: The identification of is-a 1:m attribute mappings requires that the
domain of each corresponding sub-attribute on the m side be similar to that
of the general attribute on the one side. More precisely, for each non-
composite attribute h in an interface, we look for a set of attributes f = {f1,
f2, … fr} (r > 1) in another interface X, that meets the following conditions:

1. fi's are siblings of the same parent p, and p does not have any children
other than fi's.

2. The label of the parent p is highly similar to the label of h.
3. The domain of each fi is highly similar to the domain of h.

If the conditions are met, a 1:m mapping of the is-a type is identified be-
tween h and attributes in f.

Cluster the Schema Elements based on the Similarity Matrix: Step 2
produces a similarity matrix M. Let the total number of simple domains in
the set of all given query interfaces S be w. We then have a w×w symmet-
ric similarity matrix. M[i, j] is the aggregated similarity of two attributes i
and j. For attributes in the same interface, M[i, j] is infinite, which indicate
that they should not be put together into a cluster.

The clustering algorithm used is the hierarchical agglomerative cluster-
ing algorithm. The stopping criterion is a similarity threshold. That is,
when there is no pair of clusters has the similarity greater than the thresh-
old, the algorithm stops. Each output cluster contains a set of 1:1 attribute
mappings from different interfaces.

400 10 Information Integration

Obtain Additional 1:m Mapping: The preliminary set of 1:m correspon-
dences may not have found all such mappings. The clustering results may
suggest additional 1:m mappings. The transitivity property can be used
here. For example, assume that a composite attribute e maps to two attrib-
utes f1 and f2 in another interface in step 3 and the clustering results suggest
that f1 and f2 map to h1 and h2 in yet another interface. Then, e also matches
h1 and h2.

10.8.2 A Correlation Based Approach

This technique also makes use of a large number of interfaces. It is based
on the technique in [229]. For pre-processing, the methods discussed in
Sect. 10.2 are applied. The approach is based on co-occurrences of schema
attributes and the following observations:

1. In an interface, some attributes may be grouped together to form a big-
ger concept. For example, “first name” and “last name” compose the
name of a person. This is called the grouping relationship, denoted by
a set, e.g., {first name, last name}. Attributes in such a group often co-
occur in schemas, i.e., they are positively correlated.

2. An attribute group rarely co-occurs in schemas with their synonym at-
tribute groups. For example, “first name” and “last name” rarely co-
occur with name in the same query interface. Thus, {first name, last
name} and {name} are negatively correlated. They represent 2:1
match. Note that a group may contain only one attribute.

Based on the two observations, a correlation-based method to schema
matching is in order. Negatively correlated groups represent synonym
groups or matching groups.

Given a set of input schemas S = {S1, S2, …, Sn} in the same application
domain, where each schema Si is a transaction of attributes, we want to
find all the matches M = {m1, …, mv}. Each mj is a complex matching gj1 =
gj2 = … = gjw, where each gjk is an positively correlated attribute group and

i
n
ijk Sg 1=⊆ U . Each mj represents the synonym relationship of attribute

groups gj1 ,..., gjw. The approach for finding M consists of three steps:

1. Group discovery: This step mines co-occurring or positively correlated
attribute groups. It is done by first finding the set of all 2-attribute
groups (i.e., each group contains only two attributes), denoted by L2,
that are positively correlated according to the input schema set S (one
data scan is needed). A 2-attribute group {a, b} is considered positively
correlated if cp(a, b) is greater than a threshold value τp, where cp is a
positive correlation measure. The algorithm then extends 2-attribute

10.8 Integration of Web Query Interfaces 401

groups to 3-attribute groups L3. A 3-attribute group g is considered posi-
tively correlated if every 2-attribute subset of g is in L2. In general, a k-
attribute group g is in Lk if every (k−1)-attribute sub-group of g is in Lk-1.
This is similar to candidate generation in the Apriori algorithm for asso-
ciation rule mining (see Chap. 2). However, the method here does not
scan the data after all 2-attribute groups have been generated.

Example 5: Let L2 = {{a, b}, {b, c}, {a, c}, {c, d}, {d, f}}, which con-
tains all 2-attribute groups that are discovered from the data. {a, b, c} is
in L3, but {a, c, d} is not because {a, d} is not in L2. ▀

2. Match discovery: This step mines negatively correlated groups includ-
ing those singleton groups. Each discovered positively correlated group
is first added into those transactions in S that contain some attributes of
the group. That is, for a schema Si and a group g, if Si ∩ g ≠ ∅, then Si =
Si ∪ {g}. The final augmented transaction set S is then used to mine
negatively correlated groups; which are potential matching groups. The
procedure for finding all negatively correlated groups is exactly the
same as the above procedure for finding positively correlated groups.
The only difference is that a different measure is used to determine
negative correlations, which will be discussed shortly. A 2-attribute
group {a, b} is considered negatively correlated if cn(a, b) is greater than
a threshold value τn, where cn is a negative correlation measure.

3. Matching selection: The discovered negative correlations may contain
conflicts due to the idiosyncrasy of the data. Some correlations may also
subsume others. For instance, in the book domain, the mining result may
contain both {author} = {first name, last name}, denoted by m1 and {sub-
ject} = {first name, last name}, denoted by m2. Clearly, m1 is correct, but
m2 is not. Since {subject} = {author} is not discovered, which should be
due to transitivity of synonyms, m1 and m2 cannot be both correct. This
causes a conflict. A match mj semantically subsumes a match mk, de-
noted by mj f mk, if all the semantic relationships in mk are contained
in mj. For instance, {arrival city} = {destination} = {to} f {arrival city} =
{destination} because the synonym relationship in the second match is
subsumed by the first one. Also, {author} = {first name, last name} f
{author} = {first name} because the second match is part of the first.

We now present a method to choose the most confident and consistent
matches and to remove possibly false ones. Between conflicting matches,
we want to select the most negatively correlated one because it is more
likely to be a group of genuine synonyms. Thus, a score function is
needed, which is defined as the maximum negative correlation values of all
2-attribute groups in the match:

402 10 Information Integration

score(mj, cn) = max cn(gjr, gjt), gjr, gjt ∈ mj, jr ≠ jt. (6)

Combining the score function and semantic subsumption, the matches
are ranked based on the following rules:

1. If score(mj, cn) > score(mk, cn), mj is ranked higher than mk.
2. If score(mj, cn) = score(mk, cn) and mj f mk, mj is ranked higher than mk.
3. Otherwise, mj and mk are ranked arbitrarily.

Figure 10.4 gives the MatchingSelection() function. After the highest
ranked match mt in an iteration is selected, the inconsistent parts in the re-
maining matches are removed (lines 6−10). The final output is the selected
n-ary complex matches with no conflict. Note that ranking is redone in
each iteration instead of sorting all the matches in the beginning, because
after removing some conflicting parts, the ranking may change.

Function MatchingSelection(M, cn)
1 R ← ∅ // R stores the selected n-ary complex matches
2 while M ≠ ∅ do
4 Let mt be the highest ranked match in M //select the top ranked match
5 R ← R ∪ {mt}
6 for each mj ∈ M do
7 mj ← mj – mt; // remove the conflicting part
8 if |mj | < 2 then
9 M ← M – {mj} // delete mj if it contains no matching
10 endfor
11 endwhile
12 return R

Fig. 10.4. The MatchingSelection function

Correlation Measures: There are many existing correlation tests in statis-
tic, e.g., χ2 test and lift, etc. However, it was found that these methods were
not suitable for this application. Hence, a new negative correlation measure
corrn for two attributes Ap and Aq was proposed, which is called the H-
measure. Let us use a contingency table (Fig. 10.5) to define it. fij in the
figure is the co-occurrence frequency count of the corresponding cell:

 Ap ¬Ap
Aq f11 f10 f1+
¬Aq f01 f00 f0+

 f+1 f+0 f++

Fig. 10.5. Contingency table for test of correlation

10.8 Integration of Web Query Interfaces 403

.),(),(
11

1001

++

==
ff
ffAAHAAcorr qpqpn (7)

The positive correlation measure corrp is defined as (τd is a threshold):

⎜⎜
⎜

⎝

⎛ <−
=

++

otherwise.0

),(1),(
11

dqp
qpp f

fAAHAAcorr τ (8)

10.8.3 An Instance Based Approach

This method is based on the technique given in [531]. It matches query in-
terfaces and also the query results. It assumes that:

1. a global schema (GS) for the application domain is given, which repre-
sents the key attributes of the domain, and

2. a number of sample data instances under the domain global schema are
also available.

This technique only finds 1:1 attribute matches. We use IS to denote the
query interface schema and RS the returned result schema. Let us use an
example to introduce the key observation exploited in this technique. Fig-
ure 10.6 shows an example of an online bookstore. The part labeled Data
Attributes is the global schema with six attributes {Title, Author, Pub-
lisher, ISBN, Publication Date, Format}. The part labeled Interface is the
query interface with five input elements/attributes. When the keyword
query “Harry Potter” is submitted through the Title attribute in the inter-
face, a result page is returned which contains the answer to the query (la-
beled Result Page), which shows three book instances.

Three types of semantic correspondence represented by different lines
(dotted, dashed and solid) are also shown in Fig. 10.6. They are respec-
tively, the correspondence between attributes of the global schema and
those of the query interface, the correspondence between the attributes of
the global schema and those of the instance values in the result page, and
the correspondence between attributes in the query interface and those of
the instance values in the result pages.

Observation: When a proper query is submitted to the right element of the
query interface, the query words are very likely to reappear in the corre-
sponding attribute of the returned results. However, if an improper query is
submitted to the Web database there are often few or no returned results.

404 10 Information Integration

Fig. 10.6. An example of a Web database with its query interface and a result page

In the example shown in Fig. 10.6, the site retrieves only three matches
for the query “Harry Potter” when submitted through the “Author” attribute,
while it retrieves 228 matches for the same query when submitted to the Ti-
tle attribute. If “Harry Potter” is submitted to the “ISBN” attribute, there is
no returned result. Intuitively, the number of times that query words reap-
pear in the returned results gives us a good indication what attributes
match in the interface schema, the global schema, and the result schema.

To obtain the number of reappearing occurrences, each value from the
given instances can be submitted to each interface element while keeping
default values for the other elements. For each TEXTBOX element in the
query interface, all attribute values from the given instances are tried ex-
haustively. For each SELECT element, its domain values are limited to a
set of fixed options. Then, an option similar to a value in the given in-
stances is found and submitted. Here, “similar” means that the attribute
value and the option value have at least one common word. Note that this
approach assumes that a data extraction system is available to produce a
table from a returned result page (see Chap. 9). Each column has a hidden
attribute (i.e., of the result schema).

By counting the number of times that the query words re-occur in each
column of the result table, a 3-dimensional occurrence matrix (OM) can
be constructed. The three dimensions are: global schema (GS) attributes,
query interface schema (IS) attributes and result schema (RS) attributes.
Each cell OM[i, j, k] contains the sum of the occurrence counts obtained
from kth attribute of RS of all the sample query words from the ith attrib-
ute of GS when the query words are submitted to the jth attribute of IS.

Refine Search

Your Search:

Harry Potter
Title:

Author:

any
Format:

ISBN:

Search

Query Interface

…

Format

ISBN

Publish Date

Publisher

Author

Title

Data Attributes

Search Results

A Comprehensive Guide to Harry Potter
Paperback | Jan 2001|Carson Dellosa Publishing company, Incor-
porated

Beatrix Potter to Harry Potter: Portraits of Children’s
Writers
Julia Eccleshare Hardcover | Sep 2002 | National Portrait Gallery
God, Devil and Harry Potter
John Killinger Hardcover | Dec 2002 | St. Martin’s Press, LLC

Result Page

10.8 Integration of Web Query Interfaces 405

Intra-Site Schema Matching: We now briefly describe how to match at-
tributes in IS and GS, IS and RS, and GS and RS based on the projected
matrices of OM, i.e., OMIG(M×N), OMIR(M×L), and OMGR(N×L), where N is the
number of attributes in the global schema, M is the number of elements in
the interface schema, and L is the number of columns in the result table.
An example OMIG(5×4) matrix is shown in Fig. 10.7 with the correct match-
ing highlighted, GS = {TitleGS, AuthorGS, PublisherGS, ISBNGS} and IS =
{AuthorIS, TitleIS, PublisherIS, KeywordIS, ISBNIS}.

We observe from Fig. 10.7 that the highest occurrence count may not
represent a correct match. For example, the cell for AuthorIS and Publish-
erGS (534) has the highest value in the matrix but AuthorIS and PublisherGS
do not correspond to each other. In general, for a cell mij, its value in com-
parison with those of other cells in its row i and its column j is more im-
portant than its absolute count.

 TitleGS AuthorGS PublisherGS ISBNGS

AuthorIS 93 498 534 0
TitleIS 451 345 501 0

PublisherIS 62 184 468 2
KeywordIS 120 248 143 275

ISBNIS 0 0 0 258

Fig. 10.7. An example of a OMIG(M×N) matrix with all matches highlighted

The algorithm in [531] uses the mutual information measure (MI) to
determine correct matches. The mutual information, which measures the
mutual dependence of two variables, is defined as follows:

.
)Pr()Pr(

),Pr(log),Pr(),(2 yx
yxyxyxMI = (9)

In our context, x and y are attributes from IS and GS respectively. The
probabilities, Pr(x, y), Pr(x) and Pr(y), can be easily computed using the
OMIG(M×N) matrix.

The algorithm simply computes the mutual information of every pair of
attributes based on the counts in the matrix such as the one in Fig. 10.7. A
corresponding mutual information matrix (called MI matrix) is then
constructed (not shown here). To find 1-1 matches of the two schemas, the
algorithm chooses each cell in the MI matrix whose value is the largest
among all the values in the same row and the same column. The
corresponding attributes of the cell forms a final match.

The paper also has a similar method for finding matches from multiple
Web databases, which is called inter-site schema matching.

406 10 Information Integration

10.9 Constructing a Unified Global Query Interface

Once a set of query interfaces in the same domain is matched, we can
automatically construct a well-designed global query interface that con-
tains all the (or the most significant) distinct attributes of all source inter-
faces. To build a “good” global interface, three requirements are identified
in [154].

1. Structural appropriateness: As noted earlier, elements of query inter-
faces are usually organized in groups (logical units) of related attributes
so that semantically related attributes are placed in close vicinity. For
example, “Adults”, “Seniors”, and “Children” of the interfaces shown in
Fig. 10.1 are placed together. In addition, multiple related groups of at-
tributes are organized as super-groups (e.g., “Where and when do you
want to go?” in Fig. 10.1). This leads to a hierarchical structure for in-
terfaces (see Fig. 10.8), where a leaf in the tree corresponds to an attrib-
ute in the interface, an internal node corresponds to a (super)group of at-
tributes and the order among the sibling nodes within the tree resembles
the order of attributes in the interface (from left to right). The global
query interface should reflect this hierarchical structure of the domain.

2. Lexical appropriateness: Labels of elements should be chosen so as to
convey the meaning of each individual element and to underline the hi-
erarchical organization of attributes (e.g., the three attributes together
with the parent attribute “Number of Passengers” in Fig. 10.1).

3. Instance appropriateness: The domain values for each attribute in the
global interface must contain the values of the source interfaces.

We will give a high level description of the algorithms in [153, 154] that
build the global interface by merging given interfaces based on the above
three requirements. The input to the algorithms consists of (1) a set of
query interfaces and (2) a global mapping of corresponding attributes in
the query interfaces. It is assumed that mapping is organized in clusters as
discussed in Sect. 10.8.1. Each cluster contains all the matched attributes
from different interfaces. We note that the domain model discovery idea in
[227] can be seen as another approach to building global interfaces.

10.9.1 Structural Appropriateness and the Merge Algorithm

Structural appropriateness means to satisfy grouping constraints and ances-
tor-descendant relationship constraints of the attributes in individual inter-
faces. These constraints guide the merging algorithm to produce the global
interface, which has one attribute for each cluster.

10.9 Constructing a Unified Global Query Interface 407

Fig. 10.8. Three input query interfaces (S1, S2, and S3) and the derived global
query interface (GS).

Grouping Constraints: Recall that semantically related attributes within
an interface are usually grouped together. Grouping constraints require that
these attributes should also appear together in the global interface.

As the global interface has an attribute for each cluster, the problem is to
partition all the clusters into semantically meaningful subsets (or groups),
which are employed to organize attributes in the global interface. For in-
stance, for the example in Fig. 10.8, the following sets of clusters are pro-
duced, {c_deptCity, c_destCity}, {c_deptYear, c_deptTime, c_deptDay,
c_depMonth}, and {c_Senior, c_Adult, c_Child, c_Infant}, where c_X is a
cluster representing X (e.g., c_deptCity and c_destCity are clusters repre-
senting departure cities and destination cities, respectively).

The partition is determined by considering each maximal set of adjacent
sibling leaves in the schema tree of each source interface whose parent is
not the root. The leaves whose parent is the root are not considered be-
cause no reliable information can be derived. These structural constraints
are collected from all source interfaces in order to infer the way that attrib-
utes are organized in the global interface. All those sets (or groups) of clus-
ters whose intersection is not empty are merged to form the final groups,
which are sequences of attribute clusters that preserve adjacency con-
straints in all interfaces. For example, {c_Adult, c_Senior, c_Child},
{c_Adult, c_Child}, {c_Adult, c_Child, c_Infant} are merged to produce
the final group, [c_Senior, c_Adult, c_Child, c_Infant], which preserves all

S1 S2 GS

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depMonth
depDay
depTime

Return Date

Number of Passengers
Adults
Seniors
Children

retMonth
retDay
retTime

From
To

Depart
leaveMonth
leaveDay

Return

Passengers
Adults
Children

retMonth
retDay

From
Depart

To

dep_Month
dep_Day
dep_Year

Return

Travelers
Adult
Child
Infant

ret_Month
ret_Day
ret_Year

Where … travel?
Departing From
Going To

When Do You Want to Go?
Departure Date

depTime

Return Date

Travelers
Adults
Seniors
Children

retMonth
retDay
retTime

Cabin

dep_Year

ret_Year

Cabin

S3

Infant

depMonth
depDay

408 10 Information Integration

adjacency constraints. Such a sequence does not always exist. In such a
case, a sequence that accommodates most adjacency constraints is sought.

Ancestor-Descendant Relationships: In hierarchical modeling of data the
same information can be represented in various ways. For instance, the re-
lationship between “Authors” and “Books” can be captured as either ”Au-
thors” having “Books”, which makes “Books” a descendant of “Authors”,
or “Books” having “Authors”, which makes “Books” an ancestor of “Au-
thors”. This, however, was not found to be a problem [153]. No such con-
flicting cases were found from a study of 300 query interfaces in eight ap-
plication domains.

Merge Algorithm: The merge algorithm merges two interfaces at a time
to produce the final global interface schema. One of them is the current
global interface G. At the beginning, the schema tree with the most levels
is chosen as the initial global schema G. Then each other interface is se-
quentially merged with G. During each merge, G is refined and expanded.
The algorithm works in a bottom-up fashion. The merging between leaves
is produced based on the clusters. The mapping between internal nodes is
based on mappings of their children, which may be either leaf nodes or in-
ternal nodes. To meaningfully insert leaves without a match in the correct
position, the algorithm relies on groups computed above to infer each leaf
position. In our example, we start by merging S1 and S3. S1 is the initial
global interface G. Within each group, it is easy to see the position of “In-
fant”, “ret_Year” and “dep_Year” (see Fig. 10.8 on the right). “Cabin” is
inserted at the end since leaf children of the root are discarded before
merging and then added as children of the root of the integrated schema
tree. Additional details can be found in [153].

10.9.2 Lexical Appropriateness

After the interfaces are merged, the attributes in the integrated interface
need to be labeled so that (1) the labels of the attributes within a group are
consistent and (2) the labels of the internal nodes are consistent with re-
spect to themselves and to the leaf nodes [154].

It can be observed in the query interface of Fig. 10.1 that between the
labels of the attributes grouped together there are certain commonalities.
For instance, “Adults”, “Seniors” and “Children” are all plurals, whereas
“Leaving” and “Returning” are gerunds. Ideally, the groups within the
global interface should have the same uniformity property. Since the at-
tributes may be from different interfaces, a group of attributes within the
unified interface might not correspond to any group in a single interface,

10.9 Constructing a Unified Global Query Interface 409

which makes it hard to assign consistent labels. To deal with the problem,
a strategy called intersect-and-union is used, which finds groups with
non-empty intersection from different interfaces and then unions them.

Example 6: Consider the example of the three interfaces in Fig. 10.8 with
their passenger related groups organized as the table below. It is easy to
see a systematic way of building a consistent solution.

Cluster/Interface c_Adult c_Senior c_Child c_Infant
S1 Adults Seniors Children
S2 Adults Children
S3 Adult Child Infant

Notice that by combining the labels given by S1 and S2 a consistent nam-
ing assignment, namely, “Seniors”, “Adults” and “Children”, can be
achieved because the two sets share labels (i.e., “Adults” and “Children”)
that are consistent with the labels in both sets. This strategy can be itera-
tively applied until a label is assigned to each attribute in the group.

To deal with minor variations, more relaxed rules for combining attrib-
ute labels can be used, e.g., requiring that the set of tokens of the labels to
be equal after removal of stopwords (e.g., “Number of Adults” has the
same set of tokens as “Adults Number”, i.e. {Number, Adults}) and stem-
ming. If a consistent solution for the entire group cannot be found, consis-
tent solutions for subsets of attributes are constructed.

The assignment of consistent labels to the internal nodes uses a set of
rules [154] that tries to select a label for each node in such a way that it is
generic enough to semantically cover the set of its descendant leaf nodes.
For example, the label “Travelers” is obtained in the integrated interface in
Fig. 10.8 as follows. First, we know that “Passengers” is more generic
than “Number of Passengers” and thus semantically covers both {Seniors,
Adults, Children} and {Adults, Children}. Then, “Travelers” is found to be
a hypernym of “Passengers“ (using WordNet) and thus semantically cov-
ers the union of {Seniors, Adults, Children} and {Adults, Children, Infant}
which is the desired set {Seniors, Adults, Children, Infant}

10.9.3 Instance Appropriateness

Finally, we discuss how to determine the domain for each attribute in the
global schema (interface). A domain has two aspects: the type and the set
of values. To determine the domain type of a global attribute, compatibility
rules are needed [230]. For instance, if all attributes in a cluster have a fi-
nite (infinite) domain then the global attribute will have a finite (infinite)
domain. If in the cluster there are both finite and infinite domains, then the

410 10 Information Integration

domain of the global attribute will be hybrid (i.e., users can either select
from a list of pre-compiled values or fill in a new value). As a case in
point, the “Adults” attribute on the global interface derived from the two
interface in Fig. 10.1 will have a finite domain, whereas the attribute “Go-
ing to” will have a hybrid domain.

The set of domain values of a global attribute is given by the union of
the domains of the attributes in the cluster. Computing the union is not al-
ways easy. For example, the values of the domains may have different
scale/unit (e.g., the price may be in US$ or in Euro). Moreover, the same
value may be specified in various ways (e.g., “Chicago O’Hare” vs.
“ORD”). Currently, the problem is dealt with using user-provided auxiliary
thesauruses [230].

Bibliographic Notes

Schema integration has been studied in the database community since the
early 1980s. The main contributions are described in the surveys by Batini
et al [40], Doan and Halevy [146], Kalfoglou and Schorlemmer [265], Lar-
son et al. [306], Kashyap and Sheth [269], Rahm and Bernstein [455],
Sheth and Larson [488], and Shvaiko and Euzenat [491]. The database in-
tegration aspects of this chapter are mainly based on the survey paper by
Rahm and Bernstein [455]. Many ideas are also taken from Clifton et al.
[105], Cohen [107], Do and Rahm [144], Dhamankar et al. [133], Embley
et al. [162], Madhavan et al. [358], Xu and Embley [563], and Yan et al.
[566]. Web data integration is considerably more recent. Various ideas on
Web information integration in the early part of the chapter are taken from
papers by He and Chang [227, 229], and Wu et al. [559].

On Web query interface integration, which perhaps received the most
attention in the research community, several methods have been studied in
the chapter, which are based on the works of Dragut et al. [153, 154], He
and Chang [227, 229], He et al. [230], Wang et al. [531], and Wu et al.
[559]. Before matching can be performed, the Web interfaces have to be
found and extracted first. This extraction task was investigated by Zhang et
al. [609] and He et al. [231].

Another area of research is the ontology, taxonomy or catalog integra-
tion. Ontologies (taxonomies or catalogs) are tree structured schemas.
They are similar to query interfaces as most interfaces have some hierar-
chical structures. More focused works on ontology integration include
those by Agrawal and Srikant [13], Doan et al. [147], Gal et al. [190],
Zhang and Lee [602]. Wache et al. gave a survey of the area in [527].

