Mechanical properties of foamed concrete exposed to high temperatures

Md Azree Othuman Mydin a,⁎, Y.C. Wang b

a School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
b School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD, UK

ABSTRACT

This paper reports the results of an experimental and analytical study to investigate the mechanical properties of unstressed foamed concrete exposed to high temperatures. Two densities of foamed concrete, 650 and 1000 kg/m³, were made and tested with additional tests being performed on densities of 800, 1200 and 1400 kg/m³ for additional data. The experimental results consistently demonstrated that the loss in stiffness for foamed concrete at elevated temperatures occurs predominantly after about 90 °C, regardless of density as water expands and evaporates from the porous body. From a comparison of the experimental results of this research with a number of predictive models for normal strength concrete, this research has found that the mechanical properties of foamed concrete can be predicted using the mechanical property models for normal weight concrete given that the mechanical properties of foamed concrete come from Portland Cement CEM1.

1. Introduction

Foam concrete is a lightweight material consisting of Portland cement paste or cement filler matrix (mortar) with a uniformly distributed pore structure produced by mechanically introducing air in the form of small bubbles having a total volume of at least 20%. Foamed concrete can be designed to have any density in the range of 400–1600 kg/m³. It has a number of attractive characteristics such as good thermal and acoustic insulation, self-flowing and easy to produce. Although foamed concrete has low mechanical properties compared to normal strength concrete, it may be used as partition or load bearing wall in low-rise residential construction. Before it can be considered for use as a load bearing material in the building industry, it is necessary to acquire reliable information on mechanical properties of foamed concrete at ambient and elevated temperatures for quantification of its fire resistance performance.

Foamed concrete may be considered a three phase material with cement paste, aggregate (fine sand) and air voids. Consequently, the degradation mechanisms of foamed concrete are mainly caused by dehydration of the cement paste. When exposed to high temperatures, the chemical composition and physical structure of foamed concrete change significantly due to changes in the cement paste.

The degradation mechanisms of foamed concrete upon exposure to elevated temperatures include chemical degradation and mechanical deterioration where each mechanism is dominant within a specific temperature range. Chemical degradation occurs when the chemically bound water is released from the cement past. The dehydration process in the cement paste becomes significant at temperatures above about 110 °C [1] and diminishes the calcium silicate hydrate (CSH) links which provide the primary load-bearing formation in the hydrated cement. Furthermore, due to low permeability of the cement paste, internal water pressure is built up during dehydration of the hydrated CSH, which increases internal stresses and induce microcracks in the material from about 300 °C, resulting in decreased strength and stiffness of foamed concrete [2,3]. At higher temperatures around 530 °C, calcium hydroxide (Ca(OH)₂) dissociates, resulting in the shrinkage of foamed concrete. If the hot foamed concrete is exposed to water, as in fire fighting, CaO in foamed concrete turns into Ca(OH)₂ to cause cracking and destruction of foamed concrete. However, it is still extremely difficult to accurately predict these mechanisms and experimental investigation remains essential.

Thus, the main objective of this work is to provide experimental data on the mechanical properties of foamed concrete at elevated temperatures. Therefore only a constant cement–sand ratio of 2:1 and water–cement ratio of 0.5 will be used for all batches of foamed concrete samples made for this research. Tests were carried out at temperatures at about 20 (ambient temperature), 100, 200, 300, 400, 500, and 600 °C for ease of observation of the test results. Extensive compressive and bending strength tests were performed.
carried out for foamed concrete of densities of 650 kg/m³ and 1000 kg/m³. Based on these experimental results, prediction equations will be proposed, based on comparison of the experimental results with existing models for normal weight concrete. It should be pointed out that this research is not trying to solve the problem of how changing the percentage of each of the three phases (cement, sand and void) would change the foamed concrete property but the authors are trying to find a method to quantify foamed concrete mechanical properties at elevated temperatures given that the properties at ambient temperature are known.

2. Experimental setup

The foamed concrete used in this study was made from ordinary Portland Cement CEM1, fine sand, water and stable foam and Table 1 lists details of the constituent materials. The cement–sand ratio was 2:1 and the water–cement ratio was maintained at 0.5. A higher cement–sand ratio (2:1) was chosen to achieve better compressive strength and water–cement ratio of 0.5 was found acceptable to achieve adequate workability [6]. Two densities of foamed concrete, 650 and 1000 kg/m³, were cast and tested. The 650 kg/m³ density was selected as it may be used in lightweight partition walls and the 1000 kg/m³ density was considered because foamed concrete of this density would have a useful amount of mechanical properties but the authors are trying to find a method to quantify foamed concrete mechanical properties at elevated temperatures given that the properties at ambient temperature are known.

2.1. Specimen preparation

All the foamed concrete samples were made in house. The stable foam was produced using foam generator Portafoam TM2 System, obtained from the Malaysian manufacturer (www.portafoam.com). This system runs from an air compressor and consists of a main generating unit, a foaming unit, and a lance unit. The foaming agent used was Noraite PA-1 (protein based) which is appropriate for foamed concrete densities ranging from 600 kg/m³ to 1600 kg/m³. Noraite PA-1 comes from natural sources and has a weight of around 70–80 g/l and expands about 12.5 times when used with the Portafoam foam generator. Three identical specimens were prepared for each density and were tested at 28 days after mixing.

2.2. Heating of specimens

Two different electric furnaces were used for heating the foamed concrete specimens to the various steady-state temperatures. One furnace had a maximum operating temperature of 450 °C (low temperature furnace), and the second furnace had a maximum operating temperature of 1000 °C (high temperature furnace). Each of the furnaces was capable of holding three specimens. The low temperature furnace had a temperature range of 50–450 °C and was used for four of the reported thermal exposure conditions: 100 °C, 200 °C, 300 °C and 400 °C. The furnace temperature exposure profiles were produced by a programmable microprocessor temperature controller attached to the furnace power supply and monitored by a Type K thermocouple located in the furnace chamber. The high temperature furnace (Fig. 1) had a maximum operating temperature of 1000 °C. This furnace was used for exposing concrete specimens to 500 °C and 600 °C. This furnace was also controlled by a programmable microprocessor temperature controller attached to the furnace power supply based on feed-back temperature reading from a Type K thermocouple located in the furnace chamber. Pre-testing checking of the furnaces showed that both furnace controllers and furnace power system could maintain furnace operating temperatures within ±1 °C over the test range.

2.3. Test overview

A variety of test methods may be used to obtain different aspects of mechanical properties of materials at high temperatures, including the stressed test, the unstressed test, and the unstressed residual strength test [7]. In this research, the unstressed test method was adopted for convenience. In the unstressed test, the

![Fig. 1. High temperature electric furnace with specimens.](image_url)
sample was heated, without preload, at a steady rate to the predetermined temperature. While maintaining the target temperature, load was applied at a prescribed rate until sample failure. Because the temperature is unchanged, the test is also referred to as steady state test, as opposed to transient test in which the specimen temperature changes with time.

2.4. Compression test setup

The compressive strength tests were carried out on 100 × 200 mm cylinders. The specimens were removed from moulds after 24 h of casting and then seal cured in domestic cling film for 28 days. Prior to testing, the specimens were removed from the curing tank and put in the oven for 24 h at 105 °C. After 24 h, all the specimens were removed from the oven and their ends were ground flat. To monitor the strain behavior at ambient temperature during loading, two strain gauges was fitted on each sample for the ambient test only. Since no strain measurement was made at elevated temperatures, the ambient temperature strain measurements were used to confirm that the strain calculated based on the displacement of the loading platen was of sufficient accuracy. Four Type K thermocouples were installed in the central plane of each cylinder specimen as shown in Fig. 2.

Loading was applied using an ambient temperature machine after removing the test samples from the furnace. To minimise heat loss from the specimen to atmosphere, each specimen was wrapped with insulation sheets immediately after being removed from the electric furnace. For each set of test, three replicate tests were carried out to check consistency of results. The target temperature was stable throughout the testing period. Fig. 3 shows temperature variations throughout the loading phase for specimens of 1000 kg/m³ density at target temperature of 200 °C.

2.5. Three point bending test setup

Three methods may be used to obtain the tensile strength of concrete: direct tensile test, tensile splitting test or flexural (three point bending) test. For convenience in this study, the three point bending test was carried out. The preparation of samples followed a similar procedure as outlined above for the compression tests. The specimens were rectangular parallelepipeds of height (h) 25 mm, width (w) 125 mm and length (l) 350 mm. The specimen was simply supported and was subjected to point load at the centre point. The length between the supports was Ls = 200 mm, giving a Ls/h aspect ratio of 8 and sufficient to ensure predominance of bending behavior. The load–deflection was recorded for the evaluation of flexural tensile strength. Assuming linear elastic behavior, the maximum flexural bending strength (fcr) is at the centre (point B) which is defined as:

\[f_{cr} = \frac{1}{4} PL \left(\frac{bd^3}{6} \right) = \frac{3PL}{2bd^2} \]

(1)

where \(\frac{1}{4} PL \) is the bending moment at point B and \(\frac{bd^3}{6} \) is the elastic modulus for rectangular cross-section. The flexural strength becomes tensile strength only if the material behavior is linear until tensile failure.

The flexural modulus of elasticity may be calculated using the following equation:

\[E_{cr} = \frac{PL^3}{4bd^4y} \]

(2)

where y is the maximum deformation at the centre of the beam.

2.6. Porosity measurements

Porosity in foamed concrete plays a major role in determining its mechanical properties. Determination of porosity is, in fact, a quite complex problem. In this study, the porosity of foamed concrete was determined through the Vacuum Saturation method [8]. The measurements of foamed concrete porosity were conducted on slices of 68 mm diameter cores cut out from the centre of 100 mm cubes. The specimens were heated to predetermined temperature (ambient, 200 °C, 400 °C and 600 °C) until constant weight had been attained and were then placed in a desiccator under vacuum for at least 3 h, after which the desiccator was filled with de-aired, distilled water. The porosity was calculated using the following equation:

\[P = \frac{(W_{sat} - W_{dry})}{(W_{sat} - W_{wat})} \times 100 \]

(3)

where P = porosity (%); Wsat = weight in air of saturated sample; Wwat = weight in water of saturated sample and Wdry = weight of oven-dried sample. The measured results are given in Table 3.
3. Results and discussion

3.1. Effects of high temperature on foamed concrete density

Hydrated cement paste is composed from four major compounds of tricalcium silicate (3CaO·SiO$_2$), dicalcium silicate (2CaO·SiO$_2$), tricalcium aluminate (3CaO·Al$_2$O$_3$) and tetracalcium aluminoferrite (4CaO·Al$_2$O$_3$·Fe$_2$O$_3$). The most significant products involved in hydration reactions are calcium silicate hydrate (C-S-H) and portlandite, also called calcium hydroxide (Ca(OH)$_2$). These phases (three phases of dehydration and final phase of CO$_2$ release) are attributed as:

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2
\]

The previously described three stages of dehydration are characterized by considering phase changes in the concrete at different temperatures. Gallé and Sercombe [11] attributed the growth of porosity to the formation of large capillary pores in the concrete which corresponds to the release of adsorbed water in capillary pores and release of chemically bound water in the hydrated cement paste. Gallé and Sercombe [11] observed that macrocracks correlated to microcracks observed at the surface of specimens heated beyond 250 °C. During the heating process, the authors observed from 300 °C a number of cracks on the foamed concrete specimens due to the heating, which could be concurrent to the growth of porosity and microstructure changes. Ye et al. [12] attributed the increase in porosity due to the decomposition of calcium silicate hydrate (CSH) and calcium hydroxide (CH). These transformations formed additional void spaces in heated concrete.

The three curves are similar and the three dehydration phases can be clearly seen in Fig. 4. This figure also shows a further weight loss phase, occurring between 750 °C and 850 °C, which can be assigned to the release of carbon dioxide (CO$_2$) from calcium carbonate (CaCO$_3$) [9]:

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2
\]

Table 4 summarises the density change values for the four phases (three phases of dehydration and final phase of CO$_2$ release) of weight loss.

3.2. Effect of high temperature on porosity of foamed concrete

The pore structure of cementitious material, predetermined by its porosity, is a very significant characteristic as it influences the properties of the material such as strength and durability. The porosity could therefore be a major factor influencing the material properties of foamed concrete and an in depth look into this aspect is essential to determine the relationships between porosity and material properties. Generally, the mechanical properties of foamed concrete decrease with increasing porosity. The density of foamed concrete may be diverse for the same water–cement ratio, through the integration of different amounts of foam, which may result in a different porosity and void sizes. For that reason, any change in the micro structure of foamed concrete due to a variation in the void system may influence the mechanical properties considerably in relation to density.

Table 3 indicates that the different replicate samples of the same test give consistent results.

Table 3

Porosity of foamed concrete obtained through vacuum saturation apparatus.

<table>
<thead>
<tr>
<th>Density (kg/m3)</th>
<th>Sample</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ambient</td>
</tr>
<tr>
<td>650</td>
<td>1/1</td>
<td>74.8</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>74.7</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>74.8</td>
</tr>
<tr>
<td>1000</td>
<td>1/4</td>
<td>49.7</td>
</tr>
<tr>
<td></td>
<td>1/5</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>50.4</td>
</tr>
</tbody>
</table>

The dehydration process starts as early as 90 °C. In the range of 90–170 °C, the evaporable free water and part of the chemically bond water escapes. The evaporable free water may be considered to have been completely eliminated by 170 °C. Some chemically bond water is also lost through decomposition of the calcium silicate hydrate (C-S-H) gel that takes place between 120 °C and 140 °C and decomposition of ettringite around 120 °C [9]. In the temperature range between 200 °C and 300 °C, some of the chemically bond water is released from further decomposition of the C-S-H gel and the sulfoaluminate phases (3CaO·Al$_2$O$_3$·CaSO$_4$·12H$_2$O and 3CaO·Al$_2$O$_3$·3CaSO$_4$·3H$_2$O) of the cement paste [9]. Further dehydration occurs at around 450 °C, which corresponds to decomposition of Ca(OH)$_2$ → CaO + H$_2$O [9] and it is completed at 530 °C. At the second dehydration reaction, 75% of the chemically combined water is vaporised and the remaining 25% is then evaporated at the third dehydration reaction.

The three curves are similar and the three dehydration phases can be clearly seen in Fig. 4. This figure also shows a further weight loss phase, occurring between 750 °C and 850 °C, which can be assigned to the release of carbon dioxide (CO$_2$) from calcium carbonate (CaCO$_3$) [9]:

\[
\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2
\]
Fig. 5 presents the total porosity for each mix as a function of the temperature. Foamed concrete of both densities experienced a slight monotonous increase in porosity with temperature. The initial porosity for 650 and 1000 kg/m³ density was 74.8% and 50.0% respectively. Between 200 °C and 300 °C, the porosity increased considerably for the higher density foamed concrete while the increase was more moderate for the lower density foamed concrete due to decomposition of the different amounts of calcium silicate hydrate gel and sulfoaluminate. At 300 °C, the measured porosity for 650 and 1000 kg/m³ density was 75.5% and 51.9% correspondingly. For temperatures beyond 400 °C, the measured porosity showed some increase corresponding to the decomposition of calcium hydroxide to form calcium oxide. At 600 °C, the porosity was 76.3% and 53.7% for 650 and 1000 kg/m³ respectively. Nevertheless, in general, due to the high porosity at ambient temperature, foamed concrete may be considered to have constant porosity at different temperatures.

3.3. Effects of high temperature on compressive strength of foamed concrete

As will be shown later in Section 3.4, the three duplicate tests of each series gave very consistent results so the average results may be used. As expected, for both densities, the foamed concrete compressive strength decreased with temperature. Fig. 6 presents the compressive strength and normalized compressive strength of foamed concrete at different temperatures. On initial heating, the foamed concrete made with Portland Cement CEM1 lost the absorbed, evaporable (or free) water and then the chemically bound water. The loss of water would induce micro cracking resulting in a reduction in strength. Between 90 °C and 170 °C, the compressive strength decreased slowly due to the release of free water and some of the chemically bound water. According to Khoury [13], the decrease in compressive strength between 20 and 150 °C corresponds to a reduction of the cohesion of the Van der Waal forces between the calcium silicate hydrate layers. This decreases the surface energy of calcium silicate hydrate and leads to the formation of silanol groups (Si–OH: OH–Si) that presents weaker bonding strength. However, because this change only affects the concrete superficially, the reduction in concrete strength is not significant and the compressive strength of the foamed concrete samples at 200 °C still retained about 94% of the original unheated value. Between 200 °C and 400 °C, decomposition of C-S-H gel and the sulfoaluminate phases caused cracks in the specimens [9]. These cracks had significant effects on the compressive strength of foamed concrete [3]. At 400 °C, the foamed concrete strength retained only about 75% of its initial value for both densities. Further degradation and loss of strength continued to take place at high temperatures. At temperature of 600 °C, the foamed concrete retained only about 40% of the original strength for both densities.

Since the compositions of both densities of foamed concrete are identical, except for increased pores in the lower density foamed concrete, it is not surprising that the normalized strength – temperature relationships of foamed concrete of both densities are almost the same.

<table>
<thead>
<tr>
<th>Actual density (kg/m³)</th>
<th>Remaining density at the end of each phase (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven dried density</td>
<td>(1st) Completed at 170 °C</td>
</tr>
<tr>
<td>650</td>
<td>642</td>
</tr>
<tr>
<td>1000</td>
<td>983</td>
</tr>
<tr>
<td>1850</td>
<td>1803</td>
</tr>
</tbody>
</table>

Table 4
Density change values due to the dehydration and gas release process.

Fig. 5. Porosity of foamed concrete of two initial densities as a function of temperature.

Fig. 6. Compressive strength (left) and normalized compressive strength (right) of foamed concrete as a function of temperature.
3.4. Effects of high temperature on compressive stress–strain relationship of foamed concrete

The engineering stress–strain relationships of foamed concrete were determined from the measured load and deflection results using the original specimen cross-sectional area A_0 and length L_0. Due to difficulty of using strain gauges at high temperatures, the deflection used to calculate the strain was that of the movement of the loading platen. To confirm this method, strains were measured at ambient temperature. Fig. 7 compares the measured strain and that calculated using the displacement of the loading platen for the ambient temperature test. This comparison demonstrates that it is sufficiently accurate to use the loading platen displacement to calculate the axial strain of the test specimen.

The tests were displacement controlled where the crack continue to develop and grow after the peak load is reached. Since the test specimens failed in a brittle manner after reaching the peak stress, it was not possible to obtain the descending branch of the stress–strain relationship. Fig. 8 presents the average stress–strain curves at all different testing temperatures for the two densities.

For both densities at all temperature levels, the ascending branch was linear for stress up to 75% of the peak strength. The strain corresponding to the peak strength increased at increasing temperatures. For foamed concrete of 650 kg/m3 density, the maximum strains were 0.0034, 0.0039, 0.0055 and 0.0066 at ambient temperature, 200 °C, 400 °C and 600 °C respectively; for the 1000 kg/m3 density, the corresponding values were 0.0024, 0.0029, 0.0039 and 0.0048 at ambient, 200 °C, 400 °C and 600 °C respectively. The increase in strain results from opening of cracks initiated by the heating at higher temperatures.

Table 5 shows, for both densities and all temperatures, the elastic strain at the maximum stress, the maximum strain at the maximum stress and the ratio of these two strains. It appears that an average constant ratio of about 1.78 may be used for all cases.

3.5. Effect of high temperature on modulus of elasticity of foamed concrete in compression

Fig. 9 demonstrates the changes in modulus of elasticity of foamed concrete in compression as a function of temperature. The modulus of elasticity was taken as the secant modulus at the point where the material changed from elastic to plastic behavior from the experimental compressive stress–strain curve. Compared to the reduction in foamed concrete strength, the reduction in elastic modulus is greater. Both figures show that the loss in modulus of elasticity began immediately upon heating when the samples began to dry. The modulus of elasticity at 200 °C, 400 °C and 600 °C was respectively about 75%, 40% and 25% of the original value for both densities. As with changes in normalized strengths of foamed concrete of both densities at elevated temperatures, the normalized modulus of elasticity of foamed concrete of both densities at the same temperature was almost the same.

Table 5

<table>
<thead>
<tr>
<th>Density (kg/m3)</th>
<th>Temperature (°C)</th>
<th>Elastic microstrain at maximum stress</th>
<th>Maximum microstrain at maximum stress</th>
<th>Ratio of maximum microstrain at peak stress to elastic microstrain at peak stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>Ambient</td>
<td>1900</td>
<td>3400</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2200</td>
<td>3900</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>3000</td>
<td>5500</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>3700</td>
<td>6600</td>
<td>1.78</td>
</tr>
<tr>
<td>1000</td>
<td>Ambient</td>
<td>1300</td>
<td>2400</td>
<td>1.85</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1600</td>
<td>2900</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2300</td>
<td>3900</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>2800</td>
<td>4800</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Fig. 7. Comparison of measured strain and calculated strain (based on movement of the loading platen) for foamed concrete of 650 kg/m3 density at ambient temperature.

Fig. 8. Average stress–strain relationships for foamed concrete of 650 kg/m3 (left) and 1000 kg/m3 (right) at different temperatures.
3.6. Effects of high temperature on foamed concrete failure mode in compression

All the tested foamed concrete specimens exhibited brittle failure at all temperatures levels, failing soon after reaching their peak strength. For the foamed concrete of 650 kg/m3 density, the end portion of the failed specimens resembled ‘double cone pattern’ (Fig. 10b) at the top and bottom at 400 °C and when exposed to temperature of 600 °C, the specimens failed in an irregular pattern as shown in Fig. 10c. For foamed concrete of 1000 kg/m3 density, vertical cracks appeared in the broken specimens with double cone pattern at top and bottom at 400 °C (Fig. 11b); at 600 °C, it experienced the same mode of failure as the foamed concrete of 650 kg/m3 density (Fig. 11c).

3.7. Effects of high temperature on flexural tensile strength of foamed concrete

Since foamed concrete is a brittle material, the bending test was intended to give a measure of the flexural tensile strength of the foamed concrete. Fig. 12 presents the variation in flexural tensile strength of foamed concrete as a function of temperature. The
reduction in flexural tensile strength of foamed concrete occurred predominantly after 90°C, regardless of the density of foamed concrete. Consistent with changes in the aforementioned other mechanical properties of foamed concrete, which indicates that the primary mechanism causing degradation is micro cracking, which occurs as the free water and chemically bound water evaporates from the porous body. When the chemical constitution of foamed concrete started to break down between 200°C and 300°C due to decomposition of the C-S-H and sulfoaluminate phases (3CaO·Al₂O₃·CaSO₄·12H₂O and 3CaO·Al₂O₃·3CaSO₄·31H₂O), cracks formed and there was a significant drop in tensile strength. At 400°C, the tensile strength was about 60% of the initial value for both densities. At 600°C, the flexural tensile strength achieved was only about 40% and 45% for 650 kg/m³ and 1000 kg/m³ densities respectively.

3.8. Effects of temperature on flexural tensile modulus of foamed concrete

Fig. 13 illustrates the changes in flexural modulus of foamed concrete as a function of temperature and compares the flexural modulus with the compressive modulus obtained from the cylinder tests. Although there are some differences, the compressive modulus and flexural modulus values are very similar for both densities and at different temperatures.

3.9. Additional mechanical properties test results

As mentioned earlier, this research also aims to assess and propose mechanical properties prediction equations of foamed concrete based on comparison of the experimental results with
existing models for normal strength concrete. Therefore, to get a good strength–porosity relationship and to observe the influence of voids on the mechanical properties of foamed concrete of this study, additional compression tests were carried out on three additional foamed concrete densities of 800, 1200 and 1400 kg/m³.

The pore size of foamed concrete was also determined through image analysis tool and Fig. 14 shows an example of images of the internal structure of the 1000 kg/m³ and 650 kg/m³ density foamed concrete at ambient temperature. Clearly the void sizes are not uniform. However, these two images clearly indicate that the average void size is principally a function of the foamed concrete density. The average void size tends to increase as the foamed concrete density reduces due to the higher quantity of foam used. From an analysis of the internal images of the two densities of foamed concrete, the average void size of the 650 kg/m³ and 1000 kg/m³ density foamed concrete has been determined as 0.72 mm and 0.55 mm respectively. The same analysis of the images were also done for both densities after being exposed to 0.72 mm and 0.55 mm respectively. The same analysis of the internal images of the two densities of foamed concrete of different densities at ambient temperature (results of compressive strength presented in Table 6). Using Balshin's strength–porosity relationship, the best correlation is obtained with $n = 2.4$, which was represented by the solid curve in Fig. 15. A correlation coefficient of 0.914 indicates a good correlation between this model and the test results. Thus, the compressive strength of foamed concrete at ambient temperature can be expressed as a power function of porosity as follow:

$$f_c = f_{c0}(1 - e)^n$$

(4)

where f_c is the compressive strength of foamed concrete with porosity e, f_{c0} is the compressive strength at zero porosity and n is a coefficient to be determined.

Fig. 15 plots the recorded foamed concrete compressive strength–porosity relationship for different foamed concrete densities at ambient temperature (results of compressive strength presented in Table 6). Using Balshin’s strength–porosity relationship, the best correlation is obtained with $n = 2.4$, which was represented by the solid curve in Fig. 15. A correlation coefficient of 0.914 indicates a good correlation between this model and the test results. Thus, the compressive strength of foamed concrete at ambient temperature can be expressed as a power function of porosity as follow:

$$f_c = 39.2(1 - e)^{2.4}$$

(5)

For interest, a similar study was carried out by others for foamed concrete of different densities at ambient temperature. From the experimental results of this study for foamed concrete at different temperatures, the same exercise was undertaken. The results are summarised in Table 8 and compared with results by others for other types of concrete. The n values of foamed concrete obtained in this study show some consistency, but are different from other researchers. The n values of this study are much lower than from other studies, indicating that the foamed concrete of this study suffered less void induced loss of strength.

4. Models for foamed concrete mechanical properties

Since the foamed concrete employed in this study used the same Portland Cement CEM1 as in normal weight concrete for which a number of mechanical property models have been developed, this chapter is intended to assess whether any of these models would be suitable for foamed concrete. A two-stage comparison will be made: assessment of models at ambient temperature and assessment of models for elevated temperatures, based on ambient temperature results.

The intention of this investigation is to propose a procedure to predict the mechanical properties of foamed concrete, based on existing mechanical property predictive models. This procedure is expected to assist manufacturers and future researchers to develop improved products with reduced cost of experimentation. Whilst full-scale tests to regulatory standards will still be necessary for final accreditation purpose, much of this may be avoided by developing a method to predict the mechanical properties of foamed concrete at ambient and elevated temperatures during the development stage.

4.1. Prediction of mechanical properties of foamed concrete at ambient temperature

For foamed concrete at ambient temperature, porosity represents the most important factor in affecting its strength. Therefore it is important to envisage this property correctly in order to obtain a good prediction of overall mechanical properties.

4.1.1. Strength–porosity relationship

Balshin [14] well known strength–porosity relationship will be considered to assess the effects of porosity on compressive strength of foamed concrete, which may be expressed using the following form:

$$f_c = f_{c0}(1 - e)^n$$

where f_c is the compressive strength of foamed concrete with porosity e, f_{c0} is the compressive strength at zero porosity and n is a coefficient to be determined.

Fig. 15 plots the recorded foamed concrete compressive strength–porosity relationship for different foamed concrete densities at ambient temperature (results of compressive strength presented in Table 6). Using Balshin’s strength–porosity relationship, the best correlation is obtained with $n = 2.4$, which was represented by the solid curve in Fig. 15. A correlation coefficient of 0.914 indicates a good correlation between this model and the test results. Thus, the compressive strength of foamed concrete at ambient temperature can be expressed as a power function of porosity as follow:

$$f_c = 39.2(1 - e)^{2.4}$$

(5)

For interest, a similar study was carried out by others for foamed concrete of different densities at ambient temperature. From the experimental results of this study for foamed concrete at different temperatures, the same exercise was undertaken. The results are summarised in Table 8 and compared with results by others for other types of concrete. The n values of foamed concrete obtained in this study show some consistency, but are different from other researchers. The n values of this study are much lower than from other studies, indicating that the foamed concrete of this study suffered less void induced loss of strength.
4.1.2. Modulus of elasticity–porosity relationship
As acknowledged by the author, the strength–porosity relationship proposed by Balshin (Eq. (4)) has so far only been used to determine the compressive strength of porous materials. This section will explore whether this equation (Eq. (4)) is also appropriate to establish the modulus of elasticity–porosity relationship for foamed concrete. In order to do so, the experimental results of modulus of elasticity for all densities will be plotted as a function of porosity.

Fig. 16 shows the recorded foamed concrete modulus of elasticity–porosity relationship for different foamed concrete densities at ambient temperature (results of modulus of elasticity in Table 7).

Surprisingly, the same relationship can be used. The best correlation was found by using $n = 2.8$, shown by the solid curve in Fig. 16. A correlation coefficient of 0.936 indicates a strong relationship between the model and the test results. Thus, the following modulus of elasticity–porosity relationship of foamed concrete at ambient temperature is obtained:

$$ E_c = \frac{32.9}{1 - \varepsilon^{2.8}} $$

where E_c is the compressive modulus of foamed concrete at ambient temperature and ε is porosity.

4.1.3. Porosity–density relationship
Through using Eqs. (5) and (6), it was possible to obtain an accurate assessment of the compressive strength and modulus of elasticity of foamed concrete. Nevertheless, these models require input of the porosity value. Unfortunately, porosity is a property not frequently measured outside the laboratory, and therefore it is necessary to provide a model to obtain the porosity. The simplest method to calculate the porosity value was to relate it to foamed concrete density. Since the pores inside foamed concrete were created due to addition of foams, by knowing the solid density of cement paste (without foam), one can easily predict the porosity of foamed concrete of any other density using the following equation:

$$ \varepsilon = \frac{\rho_{sc} - \rho_{dry}}{\rho_{sc}} $$

where ε is the porosity, ρ_{sc} is the solid density of cement paste (without foam) and ρ_{dry} is the dry density of foamed concrete.

The accuracy of Eq. (7) was checked by comparing the porosity values calculated using Eq. (7) and the measured porosity values using the Vacuum Saturation Apparatus [8] for different foamed concrete densities, like showed in Fig. 17. It should be noted that an average solid density of cement paste (without foam) of 2100 kg/m3 was established through experiment. The agreement is excellent.

4.2. Prediction of mechanical properties of foamed concrete at elevated temperature
A number of concrete mechanical property predictive models have been proposed by others for normal strength concrete. This

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>E_c (kN/mm2)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient</td>
<td>32.9</td>
<td>2.8</td>
</tr>
<tr>
<td>200</td>
<td>24.7</td>
<td>2.8</td>
</tr>
<tr>
<td>400</td>
<td>15.0</td>
<td>2.8</td>
</tr>
<tr>
<td>600</td>
<td>8.2</td>
<td>2.8</td>
</tr>
</tbody>
</table>
section was intended to assess the applicability of these models to foamed concrete. In particular, since the Eurocode 2 [18] models are well established, there were the principal models to be considered for adoption unless they gave grossly inaccurate results.

4.2.1. Compressive strength models for concrete at elevated temperatures

Several models have been proposed to estimate concrete compressive strength at high temperatures. Li and Purkiss [19] presented a review of the available models for the mechanical behavior of concrete at elevated temperatures and provided comparisons between the existing models. Li and Purkiss [19] suggested the following model to predict the compressive strength of concrete at elevated temperatures:

\[
f_{ct} = f_{c} \cdot \left[0.00165 \left(\frac{T}{100}\right)^3 - 0.03 \left(\frac{T}{100}\right)^2 + 0.025 \left(\frac{T}{100}\right) + 1.002\right]
\]

where \(f_{ct}\) is the concrete compressive strength at elevated temperature, \(f_{c}\) is the concrete compressive strength at ambient temperature and \(T\) is temperature in °C.

The Eurocode 2 [18] model is given below:

\[
\begin{align*}
F_{ct} &= f_{c} & & T \leq 100 \text{ °C} \\
F_{ct} &= f_{c} \cdot (1.067 - 0.00067 \cdot T) & & 100 \text{ °C} \leq T \leq 400 \text{ °C} \\
F_{ct} &= f_{c} \cdot (1.44 - 0.0016 \cdot T) & & T \geq 400 \text{ °C}
\end{align*}
\]

Hertz [2] in his study on concrete strength for fire safety design had derived an idealised data for the compressive strength of a number of concretes which included test series from more than 400 test comprising approximately 3000 specimens. The data covered a range of concretes with aggregates such as siliceous materials, limestone, granite, sea gravel, pumice, and expanded clay. He then proposed a model for compressive strength of concrete at elevated temperatures that allowed for different types of aggregate to be differentiated as follows:

\[
f_{ct} = f_{c} \cdot \left[\frac{1}{1 + \left(\frac{T}{T_1}\right)^{\alpha} + \left(\frac{T}{T_2}\right)^{\beta} + \left(\frac{T}{T_3}\right)^{\gamma}}\right]
\]

Assuming foamed concrete as a type of lightweight aggregate concrete for application of Hertz’s model, then \(T_1 = 100,000\), \(T_2 = 1100\), \(T_3 = 800\) and \(T_{ct} = 940\).

All the above-mentioned predictive models have been assessed and compared with the experimental results for all densities (650, 800, 1000, 1200 and 1400 kg/m³). Fig. 18 presents a typical comparison of predictions of the models at different temperatures against the experimental results from this study for 650 and 1000 kg/m³ density. As expected, the results showed that the Hertz [2] model gave much higher results than the test results and was not appropriate for foamed concrete. Both the Eurocode 2 [18] and Li and Purkiss [19] models seem to give good results and suitable for foamed concrete, with the Eurocode 2 predictions being slightly higher than the measured values.

4.2.2. Models for modulus of elasticity of concrete at elevated temperatures

The elastic modulus of concrete would be affected primarily by the same factors influencing its compressive strength [26]. Due to different definitions of modulus of elasticity and the difficulty of precisely calculating this value, it was not surprising that previous researchers have revealed great disparity in the experimental results. In this research, the modulus of elasticity was calculated as the secant modulus corresponding to 0.75 ultimate stress. The following models were considered.

Lu [20] in his study on fire response of reinforced concrete beams, performed an unstressed test procedure to establish the modulus of elasticity of concrete when exposed to high temperatures. He proposed the following tri-linear expression between \(E_{ct}\) and \(T\):

\[
E_{ct} = (1 - 0.0015 \cdot T) \cdot E_c & 20 \text{ °C} \leq T \leq 200 \text{ °C} \\
E_{ct} = (0.87 - 0.00084 \cdot T) \cdot E_c & 200 \text{ °C} \leq T \leq 700 \text{ °C} \\
E_{ct} = 0.28 \cdot E_c & T \geq 700 \text{ °C}
\]

where \(E_{ct}\) and \(E_c\) are the modulus of elasticity of concrete at elevated and room temperature, respectively.

Li and Guo [21] carried out an experimental investigation on strength and deformation of concrete under high temperature. They proposed a bi-linear model to predict the modulus of elasticity of concrete as given below:

\[
\begin{align*}
E_{ct} &= E_c & 20 \text{ °C} \leq T \leq 60 \text{ °C} \\
E_{ct} &= (0.83 - 0.0011 \cdot T) \cdot E_c & 60 \text{ °C} \leq T \leq 700 \text{ °C}
\end{align*}
\]

The Eurocode 2 [18] model did not explicitly give variation of modulus as a function of temperature. However, the compressive modulus may be calculated using the following equation:

\[
E_{ct} = \frac{1.5f_{ct}}{\varepsilon_{ct}}
\]

where \(f_{ct}\) is the peak stress and \(\varepsilon_{ct}\) is the strain at peak stress.

![Fig. 18. Comparison of normalized compressive strength–temperature relationships for 650 kg/m³ (left) and 1000 kg/m³ (right).](image-url)
As will be shown later in Section 4.2.3, the strains at peak stress from Eurocode 2 [18] did not agree with the measured values of this research. Therefore, the measured strains will be used in this assessment. This means that this exercise was not predictive, but merely to check whether Eq. (13) is applicable.

Li and Purkiss [19] developed a prediction model for modulus of elasticity of concrete based on published experimental data by Purkiss [27] and the data published in Eurocode 2 [18]. They defined the elastic modulus as the initial tangent modulus and gave the following relationships:

\[E_{ct} = E_c \quad T \leq 60^\circ C \] (14a)

\[E_{ct} = \frac{800 - T}{740} \cdot E_c \quad 60^\circ C \leq T \leq 800^\circ C \] (14b)

Khennane and Baker [22] in their research on concrete behavior under variable temperature and stress presented a plasticity model using a strain-rate formulation to depict the uniaxial response of concrete when subjected to combined thermal and mechanical actions and they proposed the following equation:

\[E_{ct} = (-0.001282 \cdot T + 1.025641) \cdot E_c \quad 20^\circ C \leq T \leq 800^\circ C \] (15)

Fig. 19 compares prediction of the various models with the test results for all densities at different temperatures. Except for the Lu [20] and the Li and Guo [21] models, all the other models give good predictions of the test results, particularly considering the relatively wide scatter of experimental results reported in literature. In conjunction with the conclusion drawn in the last section for compressive strength, both the Eurocode 2 [18] and the Li and Purkiss [19] models may be used. However, as previously mentioned, using the equation of Eurocode 2 [18] was predicated on the assumption that an independent means of obtaining the strains at peak stresses can be established.

4.2.3. Strain at peak compressive stress

For predicting foamed concrete strain at the maximum compressive stress (\(\varepsilon_{OT}\)), the following models may be considered in regards to the models for cases where concrete specimens were not loaded during the heating process.

(i) Anderberg and Thelandersson [23]

\[\varepsilon_{OT} = (0.00000167 \cdot T) + 0.002666 \quad T \leq 800^\circ C \] (16)

(ii) Khennane and Baker [22]

\[\varepsilon_{OT} = 0.003 \quad 20^\circ C \leq T \leq 200^\circ C \] (17a)

\[\varepsilon_{OT} = (0.00001156 \cdot T) + 0.000686 \quad T \geq 200^\circ C \] (17b)

(iii) Bazant and Chern [24]

\[\varepsilon_{OT} = (0.0000064 \cdot T) - 0.00216 \quad 20^\circ C \leq T \leq 600^\circ C \] (18)

(iv) Li and Purkiss [19]

\[\varepsilon_{OT} = \frac{2 \cdot f_c}{E_c} + 0.21 \times 10^{-4} \cdot (T - 20) - 0.9 \times 10^{-8} \cdot (T - 20)^2 \] (19)

(v) Eurocode 2 [18]

The Eurocode 2 [18] relationship is reproduced in Table 10.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Strain corresponding to peak stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0025</td>
</tr>
<tr>
<td>100</td>
<td>0.0040</td>
</tr>
<tr>
<td>200</td>
<td>0.0055</td>
</tr>
<tr>
<td>300</td>
<td>0.0070</td>
</tr>
<tr>
<td>400</td>
<td>0.0100</td>
</tr>
<tr>
<td>500</td>
<td>0.0150</td>
</tr>
<tr>
<td>600</td>
<td>0.0250</td>
</tr>
<tr>
<td>700</td>
<td>0.0250</td>
</tr>
<tr>
<td>800</td>
<td>0.0250</td>
</tr>
<tr>
<td>900</td>
<td>0.0250</td>
</tr>
<tr>
<td>1000</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

![Fig. 19. Comparison of normalized elastic modulus–temperature relationships for 650 kg/m³ (left) and 1000 kg/m³ (right).](image1)

![Fig. 20. Comparison of strain at maximum stress–temperature relationships.](image2)
Fig. 20 provides a comparison of the above-mentioned prediction models with the average test results for the two densities at different temperatures. It is clear from Fig. 20 that the Eurocode 2 [18] model is not suitable. The model of Li and Purkiss [19] provides the upper bound for e_{OT} and the model of Anderberg and Thelandersson [23] provided the lower bound. The results of the three remaining models gave close agreement with the experimental results. Out of all the models, the Bazant and Chern [24] prediction appears to give the best agreement with these experimental results.

Although the Eurocode 2 [18] values of strain at peak stress cannot be used for foamed concrete, the Eurocode 2 equation (Eq. (13)) does reveal that the strain at peak stress is simply 1.5 times the elastic strain at peak stress. In fact, based on the experimental results of this research, the strain at peak stress is about 1.78 times the elastic strain at peak stress.

For analysis of structural behavior of foamed concrete, it is more important to correctly predict the modulus of elasticity than the strain at peak stress. Therefore, this research recommends using the Li and Purkiss equation (Eq. (14)) to directly predict the modulus of elasticity change as a function of temperature. The strain at peak stress can then be obtained by the following two steps: (i) using the Eurocode 2 model (Eq. (9)) to predict the foamed concrete strength at different temperatures; (ii) multiplying the elastic strain at peak stress by a constant ratio of 1.78 as obtained from this research. Fig. 21 compares values of the calculated and measured strain at peak stress for both densities at different temperatures. The agreement is excellent.

4.2.4. Stress–strain relationship of concrete exposed to elevated temperatures

The three models which will be considered for the stress–strain relationship of foamed concrete were the Anderberg and Thelandersson [23] model, Lie and Lin [25] model and the Eurocode 2 [18] model.

(i) Anderberg and Thelandersson model [23]

This model was based on transient tests and the ascending compressive part of the relationship is:

$$f_{CT} = E_{CT} \left[e_{CT} - \frac{e_{CT}^2}{2 - e_{OT}} \right]$$

Fig. 22. Stress–strain curves for 650 kg/m3 density at different temperatures.
where E_{cT} is the modulus of elasticity of concrete at elevated temperature.

(ii) Lie and Lin model [25]

This model includes an ascending and a descending branch. However, since only the ascending branch of foamed concrete stress–strain relationship could be obtained, only the ascending branch equation will be given, which was as follows.

$$f'_{cT} = f_{cT} \cdot \left[1 - \left(\frac{e_{cT} - e_{oT}}{e_{oT}} \right)^2 \right] \quad e_{cT} \leq e_{oT}$$ \hspace{1cm} (21)

where f'_{cT} is the concrete compressive stress at elevated temperature, f_{cT} is the concrete compressive strength at elevated temperature, e_{cT} is the concrete strain at elevated temperature and e_{oT} is the strain at the maximum concrete stress.

(iii) Eurocode 2 model [18]

The Eurocode 2 equation is:

$$f_{cT} = \frac{3e_{cT}f_{cT}}{e_{oT} \left(2 + \left(\frac{e_{cT}}{e_{oT}} \right)^3 \right)}$$ \hspace{1cm} (22)

Fig. 23. Stress–strain curves for 1000 kg/m3 density at different temperatures.

Fig. 24. Comparison of flexural tensile strength–temperature relationships for 650 kg/m3 (left) and 1000 kg/m3 (right).
All three models require input of the foamed concrete peak stress \(f_{ct}\) and strain at peak stress \(e_{ct}\). For this exercise, the measured values were used so that this comparison does suffer from any inaccuracy in prediction of these input values.

Figs. 22a–d and 23a–d compare predictions of the different models with the average test results for the two densities at different temperatures (ambient, 200 °C, 400 °C and 600 °C). Except for the Anderberg and Thelandersson [23] model, Lie and Lin [25] and Eurocode 2 [18] model were almost identical and in good agreement with the experimental results for all densities at different temperatures. Since the Eurocode 2 [18] model is well established and accepted for use in fire engineering design of concrete structures, the author suggests adopting the Eurocode 2 [18] model.

4.2.5. Flexural tensile strength of concrete exposed to elevated temperatures

There was very limited research related to tensile strength of concrete at elevated temperatures. Nevertheless, a few researchers such as Anderberg and Thelandersson [23], Li and Guo [21] and Terro [28] have proposed prediction equations.

The Anderberg and Thelandersson [23] model was:

\[
\begin{align*}
 f_{ct} &= f_{ct} \cdot \left(-0.000526 \cdot T + 1.01052 \right) \quad 20 ^\circ C \leq T \leq 400 ^\circ C \\
 f_{ct} &= f_{ct} \cdot \left(-0.0025 \cdot T + 1.8 \right) \quad 400 ^\circ C \leq T \leq 600 ^\circ C \\
 f_{ct} &= f_{ct} \cdot \left(-0.0005 \cdot T + 0.6 \right) \quad 600 ^\circ C \leq T \leq 1000 ^\circ C
\end{align*}
\] (23a)

Fig. 25. Comparison between the predicted stress–strain relationships using the proposed procedure and the average experimental results for both densities.
where \(f_{crT} \) and \(f_c \) are the tensile strength of concrete at elevated temperature and ambient temperature respectively and \(T \) is temperature in °C.

Li and Guo [21] suggested the following equation based on the experimental results for tensile strength of concrete under high temperatures:

\[
f_{crT} = f_c - (1 - 0.001 \cdot T) \quad 20 \, ^\circ C \leq T \leq 100 \, ^\circ C \tag{24}\]

Terro [28] performed a numerical modeling of the behavior of concrete structures under fire condition and make recommendation as follows:

\[
f_{crT} = f_c \cdot \frac{f_{cr}}{f_c} \tag{25}\]

where \(f_{cr} \) is the concrete compressive strength at elevated temperature, \(f_c \) is the concrete compressive strength at ambient temperature.

Eurocode 2 [18] gives:

\[
f_{crT} = f_c \quad 20 \, ^\circ C \leq T \leq 100 \, ^\circ C \tag{26a}\]

\[
f_{crT} = f_c - (0.002 \cdot T + 1.2) \quad 100 \, ^\circ C \leq T \leq 600 \, ^\circ C \tag{26b}\]

Fig. 24 compares the prediction of the aforementioned models for foamed concrete density of 650 kg/m³ and 1000 kg/m³ at different temperatures against the experimental results from this study. It is clear that the model of Anderberg and Thelandersson [23] and Terro [28] provide the upper bound for \(f_{crT} \) while the model of Li and Gao [21] provides the lower bound for both densities. The Eurocode 2 [18] model did not seem to fit well with the experimental results. Overall, the model proposed by Li and Gao [21] seemed to provide the best agreement with the experimental results.

4.2.6. Summary of combined predictive models

The mechanical properties of foamed concrete that influence the stress–strain relationship were the foamed concrete strength, initial modulus of elasticity and strain at maximum stress. They experience significant changes at elevated temperatures. The foamed concrete strength and initial modulus of elasticity decrease, while the absolute value of the strain at peak stress increases.

After a comprehensive assessment of all existing mechanical property predictive models, the following procedure may be used to predict the mechanical properties of foamed concrete at high temperatures:

1. Obtaining dry density \((\rho_{dry}) \) of foamed concrete.
2. Obtaining the solid density of cement paste (without foam) and then calculate the porosity \((\varepsilon) \) of foamed concrete using Eq. (7).
3. Calculating the ambient temperature compressive strength \((f_c) \) and modulus of elasticity \((E_c) \) of foamed concrete using Eqs. (5) and (6) respectively. Values of 39.2 N/mm² and \(n = 2.4 \) for the compressive strength and 32.9 N/mm² and \(n = 2.8 \) for the compressive modulus of elasticity should be used.
4. Eurocode 2 model (Eq. (9)) to calculate foamed concrete compressive strength \((f_{cr}) \) at high temperatures was used.
5. Calculating foamed concrete modulus of elasticity \((E_{cr}) \) at high temperatures using the Li and Purkiss model (Eq. (14)).
6. Multiplying the elastic strain at peak stress by 1.78 to give the strain at peak stress.
7. Using the Eurocode 2 equation (Eq. (22)) to calculate and plot the stress–strain relationship of foamed concrete.
8. Calculating the tensile strength of foamed concrete using the equation (Eq. (24)) of Li and Guo [21].

4.3. Proposed procedure using combined predictive models

The procedure presented in Section 4.2.6 has been implemented for all the tests carried out in this study. This section presents detailed comparison between the predicted stress–strain relationships using the above procedure and the experimental results. Fig. 25a–e showed the comparison between the predicted stress–strain relationships using the proposed procedure and the average experimental results of different densities (650, 800, 1000, 1200 and 1400 kg/m³) at different temperatures. Shown in these figures were also predicted stress–strain relationships if the measured ambient temperature strength and modulus of elasticity values were used instead of using the proposed strength–porosity (Eq. (5)) and modulus of elasticity–porosity (Eq. (6)) relationships. Overall the agreement was good, demonstrating the feasibility of using the proposed procedure to predict the mechanical properties of foamed concrete of different densities at different temperatures by only knowing one single value of dry density \((\rho_{dry}) \) of foamed concrete. However, there was some inaccuracy in the stress–strain relationships using the proposed procedure which was primarily a result of some inaccuracy in the proposed strength–porosity and modulus of elasticity–porosity relationships at ambient temperature. These figures showed that if the measured strength and modulus of elasticity were used, the predicted stress–strain relationships were in very close agreement with the test results. Therefore, it was recommended that ambient temperature mechanical tests should still be carried out to obtain the strength and modulus of elasticity values, rather than relying on the strength–porosity and modulus of elasticity–porosity models. The other high temperature mechanical property models (compressive strength ratio–temperature relationship, modulus of elasticity ratio–temperature relationship, strain at peak stress and stress–strain relationship) gave very accurate results.

5. Conclusions

This paper has presented the results of a comprehensive study to quantify the mechanical properties of foamed concrete at elevated temperatures. Compressive cylinder tests and three point bending tests were carried out for a range of foamed concrete densities at different temperatures to 600 °C. The mechanical properties included compressive cylinder strength, compressive modulus of elasticity, compressive stress–strain relationship, strain at the maximum compressive stress, porosity, flexural bending strength and modulus of elasticity. The experimental results were then compared with predictive models based on normal strength concrete. From the experimental and comparative results, the following conclusions may be drawn:

1. The experimental results consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 90 °C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body.
2. Reducing the density of foamed concrete reduces its strength and stiffness. However, for foamed concrete of different densities, the normalized strength and stiffness (ratio of elevated temperature value to ambient temperature value) – temperature relationships are very similar.
3. The porosity of foamed concrete is principally a function of density and changes little at different temperatures. Thus, the change in mechanical property of foamed concrete at high tem-
peratures comes principally from changed chemical components of foamed concrete.

4. Given that the mechanical properties of foamed concrete come from Portland Cement CEM1, it has been confirmed that the reduction in mechanical properties of foamed concrete can be predicted using the mechanical property models for normal strength concrete. The Balshin equation (Eq. (4)) may be used to calculate both the ambient temperature compressive strength and compressive modulus of elasticity, as a function of porosity of foamed concrete. Nevertheless, for improved accuracy, ambient temperature mechanical property tests are still recommended.

5. For compressive strength at elevated temperatures, the well accepted Eurocode 2 [18] model is applicable and Li and Purkiss [19] model may be used to predict the compressive modulus of elasticity at elevated temperatures. For foamed concrete, the total strain at peak stress is approximately 1.78 times the elastic strain at peak stress. The Eurocode 2 [18] equation may be used to obtain the compressive stress–strain relationship of foamed concrete.

6. The model of Li and Gao [21] gave good prediction of the flexural tensile strength of foamed concrete at elevated temperatures.

Acknowledgements

The first author gratefully acknowledges financial support for this research provided by Universiti Sains Malaysia under USM Incentive Grant (Ref. No. 2011/0348).

References