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1. Introduction 
About 60% of all products produced by major chemical 

companies are delivered as solids, among them many crystalline 
materials (Wintermantel, 1999). Virtually all pharmaceutical 
production processes involve a crystallization step and most 
active pharmaceutical ingredients are administered in a crystal-
line form (Variankaval et al., 2008). Crystalline pharmaceuticals, 
agrochemicals, cosmetics and fine chemicals are high value-
added products for which crystal shape is an important quality 
factor. Though it is well known that properties of dispersed phase 
products are strongly linked to their shape, process systems 
engineering research was so far focused on particle size and size 
distributions and only during the last years efforts have been 
started to include quantitative measures for shape and shape 
distributions, e.g. Bajinca et al. (2010), Borchert et al. (2009b), 
Briesen (2006), Chakraborty et al. (2010), Kempkes et al. (2010b) 
and Ma et al. (2002). Examples where shape has been of interest -
not necessarily in quantitative terms or along with model devel-
opment - range over the whole palette from bulk chemical 
products (Aquilano et al., 2009; Liu et al., 1995) over nanoparticle 
applications (Barnard, 2009; Chemseddine and Moritz, 1999) to 
catalysis (Selloni, 2008; Yang et al., 2008; Yang and Liu, 2009; Yi 
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et al., 2009). An overview on crystal shape engineering and recent 
advances with a special focus on solution crystallization has been 
published by Doherty and coworkers (Lovette et al., 2008). 

The understanding of a complex process requires a realistic 
and thus physically interpretable model. The dynamics of dis-
persed phase processes are at best captured with a population 
balance equation (Ramkrishna, 2002; Randolph and Larson, 
1984). Modeling and numerical solution of population balance 
models accounting for crystal shape has been discussed in the 
literature as well, e.g. Borchert et al. (2009a,b), Briesen (2006) and 
Ma et al. (2002, 2008). 

The observation of crystal shapes using video microscopy has 
been investigated by different groups, e.g. Eggers (2008), 
Glicksman et al. (1994), Kempkes et al. (2008, 2010b), Larsen 
and Rawlings (2009), Li et al. (2006), and Patience and Rawlings 
(2001). The improvement of the quality of the measurements can 
in principle be done via the enhancement of the image quality or 
further development of the postprocessing algorithms. That is, 
either the hardware of the sensor is improved or extended or 
processing algorithms for image analysis are equipped with 
advanced techniques in order to apply it to data acquired from 
the (commercially) available equipment. 

In principle, the evolution of crystal shape distributions can be 
observed in experiments and simulations of process models can 
be performed. Though the coupling of observation and simulation 
opens a wide field of applications in crystallization, e.g. optimiza-
tion of control strategies and estimation of kinetic parameters 
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with regard to shape and size, only few work in this direction has 
been published, e.g. Patience and Rawlings (2001) and Wang et al. 
(2008). Given the fact that microscopic images can be acquired, 
the questions this paper aims to answer are: How can crystal 
projections easily be related to the crystal's 3D body in order to 
measure the shape distribution of a population in terms as it is 
used in the model? And how reliable is this information? 

In the following, highly idealized dynamic models for single 
crystals and crystal populations are sketched (Section 2). The 
computed evolving distribution is artificially sampled and mea-
sured using an observer whose concept is worked out in Section 3. 
In Section 4 of this paper an evolving crystal population is tracked 
over the course of a whole simulated crystallization experiment 
and growth kinetics which have been used in the simulation are 
reestimated from the measurements. Section 5 concludes the 
paper in brief. 

2. Process model 
The form of a convex crystal can be described by the orienta-

tion n i of its faces and their distances h i to the crystal center, see 
Fig. 1. Since the face orientation is fixed (Miller indices) we 
recognize the vector h = (h 1 ,h 2 , . . . , h n ) T as the geometrical state 
being a point in the geometrical state space O c Rn. Presuming 
that symmetry-related faces have the same distance to the crystal 
center, the dimensionality of the state vector can be reduced 
considerably. For example, if the planes of the crystal as shown in 
Fig. 1 are allowed to assume an individual distance to the center 
each, a 26D state space is spanned. Instead, we deem all 
symmetry-related faces to have the same distance to the crystal 
center which is a model simplification but often justified in 
growth-dominated systems. This reduces the number of dimen-
sions for the example of the crystal in Fig. 1 to three. We show the 
applicability of the presented methods throughout the paper 
using the example of a symmetric cubic crystal (cubic point 
group O h ) with faces {1 0 0} and {111}, which is a representative 
and demanding example system in the sense that the morpholo-
gical variations are rich and many interfacial angles are equal 
between different pairs of faces. 

In the remainder of this section the population balance is 
presented, Section 2.1. This population is grown in a batch 
crystallizer by natural cooling. For this case the temperature 
profile and the mass balance which takes the shape-dependent 
mass uptake into account is presented in Section 2.2. The 
population balance is discretized and can then be solved using 
simple ODE-solvers as described in Section 2.3. 

2.1. Population balance equation accounting for shape evolution 
Shape evolution of one crystal under the constraint of a 

constant number of faces within the domain O can be described 

by the vector differential equation (Borchert et al., 2009a; Taylor 
et al., 1992; Winn and Doherty, 2000): 
dh 
dt = G, (1) 
where G =(G!,G 2 , . . . ) T is the vector of the perpendicular growth 
rates of crystal faces. If not only the shape of one crystal but also 
the shape distribution of a whole population of crystals has to be 
described by a model, the preceding equation does not suffice. 
This is at best done by using a population balance equation with 
which it is in principle possible to model various effects, for 
instance nucleation of new crystals, growth and dissolution, 
breakage and aggregation. In the following we assume that no 
nucleation, dissolution, breakage or aggregation takes place in the 
crystallization system. That is, only growth occurs and thus a 
highly idealized case is considered. This is also true when the 
observation scheme in a later part of this paper is tested: if this 
will not work for such an ideal case it is unlikely to work for more 
realistic cases. 

Using the assumptions made above, the following multidimen-
sional population balance accounting for crystal shape in a seeded 
batch crystallizer reads 

+Vh . (Gn) = 0, (2a) 
subject to the initial, regularity and boundary conditions: 
I.C. : n(t = 0,h) = nSeed(h), (2b) 

R.C. : n ( t , h ) - 0 , | h | - i , 
B.C. : n Gn = 0, h e 8O. 

(2c) 

(2d) 
Of course, interesting dynamic solutions can only be produced if 
the seed distribution is different from the steady state solution to 
Eq. (2a). The main barrier for the application of such detailed 
population balance models is that growth and nucleation kinetics 
are unknown. A simple empirical growth model is given by 
Gi = kgiagi, (3) 
where a is the supersaturation (Mullin, 2001; Myerson, 2002). 
The parameters kg,i and gi are functions of solute composition and 
in practice not fully known. They are highly sensitive to certain 
process characteristics, in particular impurities and flow condi-
tions. We shall be concerned with the determination of growth 
kinetics usable in population balance models. For this, observed 
distribution data as presented later in this paper are required. 

Due to the occurring nonlinearities in the growth model, 
coupling to continuous phase balances and possibly nonlinear 
initial conditions, the population balance must be solved by 
numerical methods in most cases. The technique employed is 
presented after a short introduction to the used continuous phase 
balances. 

h 1 = (hl,h2,h3) 

N 1 = [ni,n2,n 3] 

Fig. 1. A convex crystal is described by the orientation of its faces, n,, and their 
distance to the center, h,. 

2.2. Continuous phase balance equations 
The mass balance of a batch system for the solute of which the 

crystalline phase is being assembled reads 
dm s, 

d t = - P c r y s t ^ n ( G . VVcryst(h)) dV, msolute(t = 0) = m s o l u t e , 0 , 

(4) 
where r c r y s t is the crystal density. V c r y s t (h) stands for the volume 
of the crystal as a function of the geometrical state which is 
calculated as described in Borchert et al. (2009a). The solute 
concentration is for practical reasons defined to be the mass of the 

n 
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Fig. 2. Meshing of the population region. Left: randomly distributed nodes. Middle: equilibrated mesh. Right: initial distribution on the unstructured mesh. 

current amount of solute to the solvent mass (Mullin, 2001): 
C = m s o l u t e , ( 5 } 

m s o l v e n t 
where the equilibrium concentration as a function of temperature 
is an empirical relationship, e.g. a second order polynomial 
Csat = p2T2 + p i T + p0. (6) 
The driving force for growth is the supersaturation which is 
defined here as the difference between the current and the 
equilibrium concentrations: 
s = C-Csat(T). (7) 
From the energy balance the differential equation for the t em-
perature is obtained as 
Vrcpddt = fcAOj-T) + hc ffgr. 
which is solved by 
T (t) = TJ + (T0-TJ)exp(-kA/(Vpcp)t) 

(8) 

(9) 
for the case of natural cooling, TJ = const., and negligible heat of 
crystallization. The parameter kA/(Vpcp) is set to a value reflect-
ing the dynamics of our laboratory crystallizer. 

2.3. Discretized population balance 

In order to solve Eq. (2) simultaneously with Eqs. (4) and (9) 
we approximate Eq. (2) by a system of ordinary differential 
equations. A characteristic curve of (2) is a solution to the 
following ODE 
d h 
dt = G, h(t = 0) = h 0 , (10a) 

dn — = 0, n(t = 0) = nSeed(h0), (10b) 
where h0 is the starting point of the characteristic curve. In 
principle, infinitely many characteristic curves exist originating at 
points h 0 A O which all together represent the exact solution to 
the population balance. In order to numerically approximate the 
solution, only n characteristic curves starting at selected points, 
denoted by h k , 0 , are considered: 

^ = G, hk(t = 0) = hk,0, (11a) 

^ = 0, nk(t = 0) = nseed(h0,k), k = 1, . . . ,n . (11b) 
The representative nodes h k 0 must be chosen in a way that they 
properly support the approximation of the t rue density. The 

projection of nseed on a regular, rectilinear or structured grid 
would allow a good numerical approximation. However, the 
number of grid points would be relatively large while the 
possibilities for local grid refinement are limited. Therefore, we 
used an unstructured mesh which was generated with an algo-
rithm along the work of Persson and Strang (2004). 

Firstly, the geometry of the region of interest must be repre-
sented. The choice of this region, denoted by A c O, is in our case 
determined by the number density function, i.e. only regions with 
sufficiently high number densities are taken into account. Pre-
liminary nodes p k 0 , k = 1 , . . . ,V are distributed within the region 
and passed to a Delaunay triangulation routine which connects 
the nodes, see Fig. 2 (left). This formation is now considered to be 
a truss with nodes and elastic bars which are the connecting lines 
between nodes. Due to an interaction between connected nodes 
they are moved according to the ODE: 

J!P = F(p), p(t = 0) = p0, (12) 
with p = [ p 1 , . . . ,p n] and p 0 = [ p 1 0 , . . . ,p n ,o ] . The velocity function F 
allows to manipulate the mesh with regard to spacing between 
nodes. We have chosen this function such that the equilibrium 
length between connected nodes is small in parts of the state 
space with high number densities and sparsely covered with 
nodes in regions with smaller densities. Note that t and F have no 
physical meaning, though a physical analogy has been used for 
illustration. 

The steady state solution of (12), F(p s s) = 0, provides well 
distributed points p k s s . A Voronoi tesselation is taken out assign-
ing a cell L k to the node p k s s , see Fig. 2 (middle). All nodes with a 
cell of finite size are taken as starting points of characteristic 
curves. If the mesh parameters are well chosen, this excludes 
nodes which were moved towards the boundary 8A. I.e. the 
remaining network of n < V nodes covers a region in the interior 
of A, see Fig. 2 (middle). 

We have now generated a well distributed set of nodes and are 
thus ready to write down the discretized initial distribution: 
hk,0 = pk,ss, 

nseed(h0,k)= T T ^ [ nseed (h) dVh, k = 1 V 
D V A , k JAk VA,kJ Ak 

with the cell volume 

DVA,k = dV, h . 

(13a) 

(13b) 

(14) 

The discretized seed distribution used for the simulation 
presented in the subsequent section is shown in Fig. 2 (right). 

A 
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2.4. Numerical simulation 

The discretized population balance equation, (11), and the 
mass balance (4) are discretized in time domain using the forward 
Euler scheme: 

V 

m s o l u t e , j + 1 — m s o l u t e , j — P c r y s t nkJ{G • W c r y s t ( h k j ) ) A V L , k A t , (15a) 
k — 1 

hk ,j+1 — hk j+G(Sj+1) At. (15b) 

An alternative to this simple discretization in time could be a 
higher order Runge-Kutta schemes (implicit or explicit). The 
temperature profile as given in Eq. (9) (natural cooling) has been 
used. This system is easily implementable (e.g. in MATLAB) and 
simulation studies can be taken out of which one is depicted in 
Fig. 3. The seed distribution in the bottom left corner of the state 
space is moved along a nonlinear curve which is the result of the 
coupling to the mass and energy balance. Initially, the system is 
just saturated and then cooled approaching ambient temperature 
and thus inducing supersaturation. This drives crystal growth 
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Fig. 3. Simulation results for a seeded batch crystallizer. Left: evolution of the number distribution with representative crystal shapes of the seed population and the final 
population. Right: continuous state variables. 
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Table 1 
Parameters of the simulation. 

h s e e d Mean state of seeds (m) ( 1 0 - 5 , 1 0 - 5 ) T 

S s e e d Standard deviation of seeds (m) d i a g ( 1 0 - 1 2 , 1 0 - 1 2 ) T 

Number of crystals (#) 8.29 x 10 7 

Cc Initial concentration (kgsolute/kgsolvent) Csat(T0) 
T0 Initial temperature (K) 320 
T Jacket temperature (K) 308 
m solvent Mass of solvent (kg) 1 
( k g , 1 , k g , 2 ) Growth parameter (m/s) (6 x 1 0 - 5 , 2 x 1 0 - 6 ) 
(g1 ,g2) Growth parameter (2,1) 
Pcryst Density of crystal ( kg /m 3 ) 1160 
kA/(V pcp) Crystallizer parameters (1/s) 1/600 
(P0,P1,P2) Solubility parameter (3 .68, -2 .82 x 1 0 - 2 , 5 . 5 8 x 1 0 - 5 ) 

leading to a transfer of dissolved material to the crystalline phase. 
At t ime t = 2000 s the main crystallization phase is completed, 
though there is still some degree of supersaturation left even at 
the end of the simulation at 6000 s. Parameters which were used 
in this case study are specified in Table 1. 

3. Crystal observation 
Modeling of a crystallization process like in the previous 

section is only useful when it can be equipped with proper kinetic 
expressions. Due to the complexity of numerous interacting 
process variables governing the dynamics of crystallizers, the 
quantitative knowledge of kinetic parameters as a function of a 
full set of process parameters is usually not available. Particularly 
crystal shape can be perturbed dramatically by minor changes in 
impurity concentration or simply through the switching to a 
different supersaturation level (Boerrigter et al., 2004; Gilmer, 
1980; Weissbuch et al., 1991, 1995). Because of the high sensi-
tivity it is necessary to observe a crystallization process with 
regard to the features of interest if they are critical. However, 
compared to size analysis the monitoring of particle shape is far 
less developed for good reasons of which in our opinion the most 
important ones are: (i) Sensors enabling the quantification of the 
full 3D shape, examples are given below, require thorough 
sampling preparation and are costly. (ii) In situ and ex situ 
microscopes deliver a 2D information from which it is rather 
difficult to extract quantitative information. 

The precise, non-parametric reconstruction of the 3D crystal 
shape can for instance be obtained from variants of transmission 
electron microscopes (Koster et al., 2000; Weyland et al., 2001), 
by processing of image stacks from optical microscopes (Castro 
et al., 2003) or tomographic methods, e.g. Jerram et al. (2009) and 
RJL Micro & Analytic GmbH. Especially tomography offers promis-
ing applications with regard to shape characterization and quan-
tification of dispersed phase systems in general. However, the 
application of tomography is costly and specialized staff is 
required to ensure efficient operation. 

Though the full 3D shape information is desirable to be 
available in future devices we focus on extracting useful informa-
tion from a single 2D projection of the particle. The main 
advantage is the relatively simple probe operation and handling. 
Classical optical microscopes offer the least costly method to 
acquire crystal images. But for this, a careful sample preparation 
is necessary which may alter the crystals. Further, for direct 
process control it is desirable to record and process crystal images 
online or even inline. Commercially available in situ sensors, e.g. 
PVM from Mettler Toledo (2001) or ParticleEye from Hitec Zang, 
can be installed directly in standard laboratory crystallizers. Ex 
situ sensors on the market, for instance from Sympatec (Qicpic) 
Sympatec GmbH or Retsch (Camsizer) Retsch Technology, have 

usually a better image quality than in situ probes which comes at 
the cost of an additional sampling loop. The group of Mazzotti 
developed an ex situ sensor which was upgraded to acquire 
crystal images from two different perspectives, enabling the 
access to a wealth of information which makes it easier to relate 
to the real geometry because two different projections of the 
same situation are available (Kempkes et al., 2010a). 

When the 3D geometrical state of the crystal has to be 
reconstructed from a single 2D image, only model-based methods 
can be used in contrast to non-parametric shape quantifications 
of true 3D sensors. The model is needed because features of the 
projection can then be used as an indicator for the 3D shape, that 
is, the space of possible objects throwing the projection is 
confined to those which are as well obtainable by the shape 
model. We use for this the crystal geometry model in terms of the 
state vector h. Clearly, h is the quantity we wish to measure. An 
additional difficulty to this is that the orientation of the crystal in 
space has a decisive influence on the shape of the photoprojection 
but is, depending on the sensor, a more or less stochastic process. 
In practice, the acquisition of images is performed with different 
probes as discussed above. For the design and evaluation of the 
estimation scheme, however, synthetic images have been gener-
ated so that the measured state and orientation can be directly 
and quantitatively compared to the actual state. 

The matching of a crystal projection with the actual crystal 
shape constitutes a highly nonlinear optimization problem which 
is tractable by different means. Using continuous, gradient-based 
optimization techniques in orientation and geometrical state 
space would be a possibility, but the starting point must be 
chosen well beneath the true values in order to avoid the solver to 
run into a local minimum. Global optimizers using heuristic or 
stochastic techniques require a large number of relatively costly 
function evaluations and thus the estimation of a large number of 
crystal shapes becomes infeasible. Therefore, we have used a 
lookup table in which the shape descriptors as functions of state 
and orientation are precomputed. With this it is also possible to 
go the inverse way: the determination of state and orientation 
which corresponds to a specific descriptor. This is a commonly 
used approach in object recognition (DeMenthon and Davis, 
1992) and has for instance been used to distinguish crystal 
polymorphs (Calderon De Anda et al., 2005; Li et al., 2006). 

The rest of this section is organized such that at first descrip-
tors for projections of crystal shapes are introduced and how they 
are extracted from an image. A simple state estimator is sketched 
and applied to measure a shape distribution from computer-
generated crystal images. 

3.1. Crystal projection and descriptors 
Crystals which are observed with microscopes are viewed 

from one perspective and essentially we see a projection of the 
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particle. Though there is a huge information content in the 
grayscale landscape within the particle, this information is 
particularly sensitive to the system under consideration, complex 
to analyze and difficult to interpret by quantitative means. 
Therefore, we focus on the shape of the projection which is given 
by its boundary curve. This curve is determined by the shape of 
the crystal and its orientation in space, see Fig. 4. 

For a convex crystal the boundary curve is determined by the 
convex hull of the projection of the crystal vertices which are 
connected by straight lines. That is, it is fully determined by 
(i) the length of straight lines, di, connecting projected vertices 
and (ii) angles, j i , between them, see Fig. 6. This is the basis for a 
set of shape descriptors. In order to obtain size-independent 
descriptors, the dj's are scaled that the sum of the resulting 
boundary perimeter is one: 

dj = 
E f = 1 dj E d = 1. (16) 

j = 1 

where n0 is the number of straight lines of the boundary. Of 
course, n0 is a function of shape and orientation and not fixed for a 
particular morphology but can be determined by an algorithm, 
e.g. Cole (1966). The quantity 

s = d ( 1 7 ) 
is the scaling factor relating original with scaled measures. 
Rotation invariance is accomplished by ordering the dj's in 
descending sequence: 
d 1 > d 2 > ••• > d n . (18) 
For the special case dj = dj + 1 the ordering is chosen such that dj+1 

follows dj in clockwise direction. From the angle between two 

boundary lines, j = +(dj.dj + 1 ) , jn, = +(dn.d1), the absolute value 
of the cosine is taken and together with the scaled boundary lines 
assembled to a descriptor vector: 
d = fdescr(h ,W) = (d1 . | c o s j 1 1 d n . | c o s j l ) T (19) 
It is obvious that a loss of information is caused by the projection 
and in general there is not a unique mapping from the descriptor 
vector d to the state vector h. I.e. the same set of descriptors can 
be produced from different states and orientations so that the 
inverse 
(h,W) = fdescr(d) (20) 
must not necessarily be unique. However, when the geometrical 
state is given, it is an easy task to project the vertices on a plane 
and determine the descriptor vector d. An overview of how to 
obtain descriptors from state and orientation is depicted in Fig. 5. 

The main idea of the next part is to build up a lookup table or 
database of descriptors for which the geometrical state is known. 
By comparing a measured descriptor vector to this data set, a 
guess can be made in which crystal shape is at hand. 

3.2. State estimation 
The lookup table (lut) is compiled from numerical experi-

ments : The descriptor vectors d l u t . j are acquired for boundary 
curves of crystals with randomly chosen states h l u t . j and orienta-
tions W l u t,j. The whole set of descriptors and states 
D = {dlut,1 d lu t .n l u t } , 

H = { h l u t , 1 . • • • . h l u t . n l u t } . 

C = { W l u t . 1 W l u t . n l u t } 

(21a) 
(21b) 
(21c) 

Fig. 4. Crystal projections: the same crystal shape projected from different 
perspectives (left and middle). Different shapes photographed from the same 
direction (middle and right). 

d = (oycos <jo2|» ^ 2 »i c o s ^2!' ^ 3 »l c o s CP3I, ^4,|cos (P4I, ds,\cos d6,|cos 

Fig. 6. Descriptors of the crystal projection boundary. 
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Fig. 5. Relationship between crystal boundary and its descriptors. 
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is the boundary descriptor lookup table, see Fig. 5. A state 
estimator uses this database and compares a measured descriptor 
d to those given in the table: 

e ( d , d l u t j ) = d i s t ( d - d l u t j ) , d ^ - e D, j = 1 nlut, (22) 
where the distance measure is of a special form since the number 
of descriptors can vary, depending on how many straight lines are 
exposed on the boundary of the descriptor from the database or 
the measurement. For two vectors x,y the first entries are 
compared: 

1 d i s t (x -y )= J2 jxj-yjI, x e R n , y e R" (23) 
j = 1 

The sum goes from 1 to n-1 (and not to n, the number of 
components of the shorter vector x) because the last entry of the 
descriptor vector, Eq. (19), contains for x the cosine of an angle 
between the shortest ( (n-1) th entry) and the longest (1st entry) 
line segment of the projection boundary. On the other hand if the 
descriptor vector y is larger than x, m > n, the nth entry is a cosine 
between two consecutive (in terms of length) line segments. That 
is, the two entries refer to different quantities which should not 
be compared. Furthermore, the reason for taking descriptor 
vectors of the database into account which have a different 
dimension than the measured one is that only slight changes in 
the orientation can cause a switch in the descriptor dimension 
because the number of edges projected onto the camera chip can 
change by a small orientation perturbation. However, the addi-
tionally appearing features are rather small in magnitude and in 
case that no descriptor vector has been inserted which was 
obtained exactly from that orientation, the closest entry in the 
database can still be found even though a qualitative jump lies 
between database entry and measured descriptor. 

Finally, the entry in the database which deviates least from the 
measured one is taken as the hit and the geometry of the crystal 
can be identified: 
h e s t , s c = h l u t , j : e ( d , d l u t , j O < e ( d , d l u t , k ) 8 d l u t , k e D , (24) 
where h e s t , s c must be rescaled to original dimensions using the 
scaling factor, Eq. (17): 

hest = f e s t ( d ) = she. (25) 
We shall now be concerned with the accuracy of this estimation 
scheme for the ideal case that the descriptors can be calculated 
perfectly. 

3.3. Performance of the estimator 

A population consisting of three subpopulations is examined 
which are all normally distributed with means and variances 

= (1.25,1) x 1 0 - 4 , s 1 1 1 = 5 x 1 0 - 6 , s 1 , 2 2 = 5 x 1 0 - 6 , 

= (0.9,1.25) x 1 0 - S 2 , 1 1 = 1.25 x 1 0 -

l3 = (0.375,0.5) x 1 0 - 4 , ff 3, 1 1 = 2.5 x 1 0 -

s 2 , 2 2 = 2 . 5 x 1 0 

s 3 , 2 2 = 2 . 5 x 10 
(26) 

and vanishing covariances. From each subpopulation 1000 sam-
ples are taken, see Fig. 7 (left), randomly oriented and the 
descriptor vector d = f d e s c r ( h , W ) is determined. The procedure 
described in Section 3.2 is used to reestimate the geometrical 
state. As depicted in Fig. 7 (right) the features of the population 
can be reconstructed well. Especially the distinction between 
different subpopulation is possible in a reliable way. The error of 
the estimate of the jth particle with respect to the quantity hk is 
measured by 

e j k , e s t -
h k , e s t h k , t r u e 

hk,true 
(27) 

Fig. 8 shows the error distribution for each of the three popula-
tions for both quantities h1 and h2. It can be seen that the majority 
of the estimates comes with an error below 2%. The standard 
deviation of the error distribution ranges from 2.41 x 1 0 - 3 to 
1.15 x 1 0 - 2 . The error distribution indicates that the estimation 
scheme is not working equally well in all areas of the state space. 
Particularly population 1 can be identified with a better quality 
than populations 2 and 3. The accuracy of the estimates of h2 in 
populations 2 and 3 is rather poor compared to estimates of h1. 
This is due to the lower prominence of the h2-faces on the crystal 
surface, see examples of these shapes in Fig. 7 (left). Therefore, 
features of h2-faces are less expressed in the projections and thus 
the distinction between subtle differences of h2-features requires 
highly resolved lookup tables to achieve better results. However, 
we find that a standard deviation of the error, denoted by sek, of 
less than 3% is sufficient for our purposes. This result has been 
achieved with a lookup table which was made up of n h = 1000 
different state vectors whose resulting crystal shapes are each 
photographed from nw = 300 different random directions. 

Assessing the improvement of the estimation quality with 
varying configurations of the lookup table can be done by 
considering the standard deviation of the error distribution sek. 
This is depicted for population 1 in Fig. 9 with a variation of the 
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Fig. 7. Estimation of a trimodal population consisting of 1000 crystals for each of the three populations. Left: scatter plot of samples f rom the original population including 
graphical representations of selected crystal morphologies. Right: scatter plot of the estimated population. 
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Fig. 8. Error distribution based on the comparison between real and estimated state of individual crystals for the three subpopulations shown in Fig. 7 

The equation of a straight line is 
r = x cos y + y sin y, (28) 

102 

Fig. 9. Error between given and estimated shape distribution as a function of 
database size. 

lookup table size from n h = 100 . . . 1000 and nw = 100 . . . 300. As 
expected, a blow-up of the table size improves the accuracy of the 
estimates. Particularly an increase in the number of states, nh, 
reproduces the population in a better way while the influence of 
the number of orientation variations nw is weak. It is clear now that 
the estimation scheme as described in Section 3.2 works in 
principle if the shape descriptors d are given. Now, it is an 
additional task to find a procedure which determines the shape 
descriptors from pixel and thus possibly grainy images. This topic 
is addressed next. 

3.4. Descriptors from pixel images using the Hough transform 

On a pixelized image the boundary is given by the coordinates 
of n points. We are looking for pieces of the boundary which lie on 
straight lines. In principle, a line can be drawn through every pair 
of points and subsequently all subsets of points that are close to 
particular lines can be determined. This approach would involve 
the detection of n 2 lines and the computation of n 3 comparisons 
which is computationally expensive. The Hough transform 
instead offers a more favorable method at a computational cost 
increasing linearly with n. The illustration of the Hough transform 
follows mainly the textbook of Gonzalez (Gonzalez and Woods, 
2008). 

where r is the distance from the line to the origin and y is the 
angle of the shortest vector from the origin to a point on the line. 
Let (Xj,yj) be the coordinates of a pixel. Infinitely many lines pass 
through (Xj,yj) which all satisfy Eq. (28) for a set of parameters 
(r,y) which is a curve in (r,y)-space: 
r = Xj cos y + yj sin y. (29) 
Clearly, another equation for a point (xk,yk) would then allow to 
determine the intercept of the parameter curves giving para-
meters (r',y') of a line passing through both points, see Fig. 10. The 
parameter space is now subdivided into accumulator points, e.g. 
Alm as depicted in Fig. 10 (right). Initially, the accumulator points 
are all set to zero before we run through all boundary pixels. 
Then, for every boundary pixel the curve (29) is evaluated on the 
accumulator grid. If the curve passes through the neighborhood of 
(P l ,y m ) , Alm is increased by one. At the end of this procedure Alm 

points of the boundary lie on a straight line with parameters 
(P l ,y m ) . Roughly speaking, the maxima of the accumulator points 
correspond to the most prominent straight lines in the original 
image, see Fig. 11. 

From the lengths and orientations of the computed boundary 
section, descriptors d can be calculated and used to determine the 
shape of the photographed crystal. In Fig. 12 the previously used 
trimodal population has been projected on a plane with a 
resolution of (10 m, 1 0 - 6 m) per pixel. It can be seen that the 
main features of the population can be recognized from 
the measurements but with a lower quality (Fig. 13) as if 
the descriptors are obtained from infinitely resolved planes 
(Section 3.3). This is mainly due to imperfect line detection 
through the Hough transform which can be difficult to operate 
at different length scales simultaneously. That means, subtle 
features being important for small projections are undesired to 
be detected in larger projections. By improving the line detection 
algorithm we think that for sufficiently resolved projections the 
hit rate can still be improved, then comparable to the ideal case. 

4. Connecting simulation and estimation 
So far we have been concerned with the modeling of a 

crystallization process in Section 2 and observation of crystals 
in Section 3. The application of the developed observation 
techniques to samples taken from the evolving number distribu-
tion is conducted in this section. It serves to evaluate require-
ments which have to be met to observe the crystallization process 

2 



95 C. Borchert, K. Sundmacher / Chemical Engineering Science 70 (2012) 87-98 

y j = p'/ sin 6' - c o t 6' Xj 
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• 

Fig. 10. Line passing through two points (left) and parameter curves of all possible lines passing through the respective points (right). The point of intersection, (r',9'), 
yields the parameters of the straight line passing through both points in the original (x,y)-space. 
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Fig. 11. Extraction of straight lines of a boundary curve. Left: crystal boundary from a simulated photograph. Middle: intensity image of the accumulator points in the 
parameter space. Right: identified straight lines. 
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Fig. 12. Estimation of a trimodal population consisting of 3000 crystals. Left: scatter plot of original particle population. Right: scatter plot of the estimated population. 
Examples of crystal shapes in this region of the state space can be seen in Fig. 7. 

adequately with regard to number of samples and frequency of 
sampling. Especially for the identification of kinetics used in 
population balance equations it is important to get an idea of 
how the measurement process must be dimensioned in order to 
be able to extract information of good quality. 

The shape distribution evolution as computed in Section 2.4, 
shown in Fig. 3, has been sampled at ns — 10 instants, where each 
sample comprises nc — 200 crystals. Fig. 14 (left) depicts the 
sampled population densities. The density contour plots are 
computed with a histogram smoothing algorithm (Eilers and 
Goeman, 2004). Applying the state estimation scheme as dis-
cussed above with a lookup table with n h — 1000,n^ — 300, the 
estimated populations are obtained as sketched in Fig. 14 (right). 

Unsurprisingly, the main features of the evolving distribution can 
be recognized in the observed population. 

The quantitative observation of a crystallization process is of 
value in its own right. But even more desirable is the extraction of 
kinetic data from an observed process. Since only crystal growth 
has been taken into account, we aim at restoring the growth rates 
which have been used in the simulation. Clearly, we could try to 
apply the estimation technique directly to real experiments and 
determine growth rates. However, we find it essential to test an 
observation and estimation scheme against artificial experiments 
to gain information on the reliability of the applied technique. 

A first, model free determination of the growth rates is based on 
the evaluation of particle size change between two measurements. 

X p 

p 
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Fig. 13. Error distribution of estimation population photographed on pixelized plane. 
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Fig. 14. Evolution of the number distribution as in the simulation study. Left: sampled distribution. Right: estimated distribution from photos with infinite resolution. The 
simulated evolution of the shape distribution is shown in Fig. 3 together with representative shapes at the beginning and end of the crystallization. 
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0 0 

By differentiating the mean particle size of the seed crystals 

— 1 n 
h j = V j = 1 •••."» 

" c k = 1 

numerically with respect to time 
h j+1 -h,-

ti+1 — ti 

(30) 

(31) 

and measuring the supersaturation or concentration with the same 
sampling rate we can plot the measured growth rate versus 
supersaturation and get an impression of the growth law. This is 
depicted in Fig. 15. If only samples at 10 instances are taken, it is 
not possible to estimate the underlying growth law properly. 

According to our systematic study, using 50 samples enhances 
the quality considerably. 

If a growth model of the form (3) is assumed, the measured 
evolution of the mean crystal size hj can be compared to the 
mean crystal size following from the growth law together with 
supersaturation measurements: 

h m o d ( t ) = h c + k g s g d t . k g = (kg .1 .kg . 2 ) T . g = ( g 1 , g 2 ) T . ( 3 2 ) 

The deviation between measured and modeled mean size evolu-
tion is quantified by the objectives 

e1 = ^Z(h1j—h1,modj)2, 
j = 1 

(33a) 

G 

n 
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Fig. 16. Estimation of growth rates with underlying model using a varying number of samples. Upper row: 10 samples, middle row: 20 samples, bot tom row: 50 samples. 
Left column: evolution of mean crystal size estimated from simulated experiments. Middle columns: contour plots of the objective ej as a function of growth parameters. 
The true parameter used in the simulation is indicated by a star, whereas the min imum of the objective is marked by a red circle. Right column: t rue (-) and est imated (- -) 
growth laws. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

ns _ _ 

e2 = X^h2,j-h2,mod,j) 2. (33b) 
j = 1 

In Fig. 16 the growth laws which are estimated from the mini-
mization of the objective functions are depicted. It can be seen 
that with an increasing number of samples the accuracy of the 
estimates increases. Compared to the direct numerical differen-
tiation of the mean crystal size which has been used in Fig. 15, the 
model-based estimation yields much better estimates even with 
relatively few samples. The estimation based on 20 samples 
(middle row) almost perfectly matches the true kinetics. The 
objective shows, independent of the number of samples, 
stretched valleys which are undesirable when optimization algo-
rithms are applied. Also, if it comes to the measurement of real 
data, the acquisition of images and measurement of shape 
distributions are further complicated by crystal shapes which 
are not as ideally formed as in the simulation. This can involve 
deviations from symmetry, formation of aggregates or broken 
crystals which all lead to more complex (that is, a wider variety 
of) crystal shapes whose formation are stochastic processes. 
This means for example, the aggregate geometry formed by 
the clustering of a number of crystals is due to its complexity 
essentially a random process. That is, the stochastic process 
of crystal orientation, which has been included in our analysis, 
is further superimposed by other stochastic processes. Hence, 
the data quality may further decrease and therefore stretched 
valleys of the objective in the parameter space further compli-
cates the judgement over the quality of the estimated parameters. 
We believe that this can be remedied by the model-based 
analysis and redesign of the conduction of the crystallization 
experiment of which major building bricks have been fabricated 
here. 

5. Conclusions 
The achievements of this paper are twofold. At first we have 

proposed an efficient numerical solution technique based on the 
method of characteristics. A meshing algorithm has been 
employed for this which allows the discretization of the seed 
population so that the starting points of characteristic curves can 
be determined in a rational way. Explicit Euler discretization in 
time makes it very easy to implement the resulting equations and 
gives numerically stable results for nonstiff equations. 

Secondly, an observation scheme for faceted crystals has been 
developed. It is based on the notion that the projections of 
crystals as recorded by microscopes (classical laboratory micro-
scopes, in- or ex situ probes) are strongly related to the actual 3D 
shape but randomized by the stochastic process of orientation. 
Since the inversion of observed features of the projection to the 
actual shape is a complicated reconstruction task and often not 
possible we proposed to use a lookup table. In this table the 
descriptors of the projections are tabulated together with the 
geometrical state and orientation with which they were com-
puted. A simple distance function evaluating the closeness to 
tabulated values is used to find a matching entry in the lookup 
table. This value is then taken as the estimated geometrical state. 
Robustness is guaranteed in the sense that - compared to more 
sophisticated optimization techniques - the algorithm requires a 
fixed number of operations per estimate and cannot run into 
convergence traps. It may sometimes not hit the true shape 
exactly. This comes partly from the finite resolution of the lookup 
table but is also due to ambiguous descriptors which may be 
produced from quite different shapes and orientations. But over-
all, the proposed technique has been shown to work well in 
different examples with morphologically mixed populations. 
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For the application to real systems two things must be 
addressed beforehand. The continuous feeding of new character-
istic curves to the numerical scheme is required when nucleation 
plays a role in the system under consideration. Further, the state 
estimation scheme must prove to be robust against noisy bound-
aries in pixelized images. This is not only important for the state 
estimation directly but also for the extraction algorithm supply-
ing linear boundary features from pixelized images. 
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