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Abstract

There are several metrics that characterize the performance of a parallel system, such as, parallel execution time,

speedup and e�ciency. A number of properties of these metrics have been studied. For example, it is a well

known fact that given a parallel architecture and a problem of a �xed size, the speedup of a parallel algorithm

does not continue to increase with increasing number of processors. It usually tends to saturate or peak at a

certain limit. Thus it may not be useful to employ more than an optimal number of processors for solving a

problem on a parallel computer. This optimal number of processors depends on the problem size, the parallel

algorithm and the parallel architecture. In this paper we study the impact of parallel processing overheads and

the degree of concurrency of a parallel algorithm on the optimal number of processors to be used when the

criterion for optimality is minimizing the parallel execution time. We then study a more general criterion of

optimality and show how operating at the optimal point is equivalent to operating at a unique value of e�ciency

which is characteristic of the criterion of optimality and the properties of the parallel system under study. We put

the technical results derived in this paper in perspective with similar results that have appeared in the literature

before and show how this paper generalizes and/or extends these earlier results.
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University of Minnesota and by the University of Minnesota ArmyHigh Performance Computing Research Center

under contract # DAAL03-89-C-0038.
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1 Introduction

Massively parallel computers employing hundreds to thousands of processors are commercially

available today and o�er substantially higher raw computing power than the fastest sequential

supercomputers. Availability of such systems has fueled interest in investigating the performance

of parallel computers containing a large number of processors [23, 8, 7, 27, 37, 30, 6, 33, 18, 32,

17, 38, 34, 4, 5, 29].

The performance of a parallel algorithm cannot be studied in isolation from the parallel

architecture it is implemented on. For the purpose of performance evaluation we de�ne a

parallel system as a combination of a parallel algorithm and a parallel architecture on which

it is implemented. There are several metrics that characterize the performance of a parallel

system, such as, parallel execution time, speedup and e�ciency. A number of properties of

these metrics have been studied. It is a well known fact that given a parallel architecture and a

problem instance of a �xed size, the speedup of a parallel algorithm does not continue to increase

with increasing number of processors but tends to saturate or peak at a certain value. As early

as in 1967, Amdahl [2] made the observation that if s is the serial fraction in an algorithm,

then its speedup for a �xed size problem is bounded by 1
s
, no matter how many processors

are used. Gustafson, Montry and Benner [18, 16] experimentally demonstrated that the upper

bound on speedup can be overcome by increasing the problem size as the number of processors

is increased. Worley [37] showed that for a class of parallel algorithms, if the parallel execution

time is �xed, then there exists a problem size which cannot be solved in that �xed time no

matter how many processors are used. Flatt and Kennedy [8, 7] derived some important upper

bounds related to the performance of parallel computers in the presence of synchronization and

communication overheads. They show that if the parallel processing overhead for a certain

computation satis�es certain properties, then there exists a unique value p0 of the number of

processors for which the parallel execution time is minimum (or the speedup is maximum) for a

given problem size. However, at this point, the e�ciency of the parallel execution is rather poor.

Hence they suggest that the number of processors should be chosen to maximize the product

of e�ciency and speedup. Flatt and Kennedy, and Tang and Li [33] also suggest maximizing a

weighted geometric mean of e�ciency and speedup. Eager et. al. [6] proposed that an optimal

operating point should be chosen such the e�ciency of execution is roughly 0.5.

Many of the results presented in this paper are extensions, and in some cases, generalizations

of the results of the above mentioned authors. Each parallel system has a unique overhead

function, the value of which depends on the size of the problem being attempted and the

number of processors being employed. Moreover, each parallel algorithm has an inherent degree

of concurrency that determines the maximum number of processors that can be simultaneously

kept busy at any given time while solving the problem of a given size. In this paper we study

the e�ects of the overhead function and the degree of concurrency on performance measures

such as speedup, execution time and e�ciency and determine the optimal number of processors

to be used under various optimality criteria.

We show that if the overhead function of a parallel system does not grow faster than �(p),

where p is the number of processors in the parallel ensemble, then speedup can be maximized
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by using as many processors as permitted by the degree of the concurrency of the algorithm.

If the overheads grow faster than �(p), then the number of processors that should be used

to maximize speedup is determined either by the degree of concurrency or by the overhead

function. We derive the exact expressions for maximum speedup, minimum execution time, the

number of processors that yields maximum speedup, and the e�ciency at the point of maximum

speedup. We also show that for a class of overhead functions, given any problem size, operating

at the point of maximum speedup is equivalent to operating at a �xed e�ciency and the relation

between the problem size and the number of processors that yields maximum speedup is given

by the isoe�ciency metric of scalability [22, 10, 23]. Next, a criterion of optimality is described

that is more general than just maximizing the speedup and similar results are derived under

this new condition for choosing the optimal operating point.

The organization of the paper is as follows. In Section 2 we de�ne the terms to be used

later in the paper. In Sections 3 and 4 we derive the technical results. In Section 5, we put

these results in perspective with similar results that have appeared earlier in the literature

and demonstrate that many of the results derived here are generalizations and/or extensions

of the earlier results. Throughout the paper, examples are used to illustrate these results in

the context of parallel algorithms for practical problems such as FFT, Matrix Multiplication,

Shortest Paths, etc. Although, for the sake of ease of presentation, the examples are restricted

to simple and regular problems, the properties of parallel systems studied here apply to general

parallel systems as well.

A preliminary version of this paper appears in [13].

2 De�nitions and Assumptions

In this section, we formally describe the terminology used in the rest of the paper.

Parallel System : The combination of a parallel architecture and a parallel algorithm im-

plemented on it. We assume that the parallel computer being used is a homogeneous

ensemble of processors; i.e., all processors and communication channels are identical in

speed.

Problem Size W : The size of a problem is a measure of the number of basic operations

needed to solve the problem. There can be several di�erent algorithms to solve the same

problem. To keep the problem size unique for a given problem, we de�ne it as the number

of basic operations required by the fastest known sequential algorithm to solve the problem

on a single processor. Problem size is a function of the size of the input. For example, for

the problem of computing an N -point FFT, W = �(N logN).

According to our de�nition, the sequential time complexity of the fastest known serial

algorithm to solve a problem determines the size of the problem. If the time taken by

an optimal (or the fastest known) sequential algorithm to solve a problem of size W on

a single processor is TS, then TS / W , or TS = tcW , where tc is a machine dependent

constant.
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Parallel Execution Time TP : The time elapsed from the moment a parallel computation

starts, to the moment the last processor �nishes execution. For a given parallel system,

TP is normally a function of the problem size (W ) and the number of processors (p), and

we will sometimes write it as TP (W;p).

Cost: The cost of a parallel system is de�ned as the product of parallel execution time and

the number of processors utilized. A parallel system is said to be cost-optimal if and only

if the cost is asymptotically of the same order of magnitude as the serial execution time

(i.e., pTP = �(W )). Cost is also referred to as processor-time product.

Speedup S : The ratio of the serial execution time of the fastest known serial algorithm (TS)

to the parallel execution time of the chosen algorithm (TP ).

Total Parallel Overhead To: The sum total of all the overhead incurred due to parallel pro-

cessing by all the processors. It includes communication costs, non-essential work and

idle time due to synchronization and serial components of the algorithm. Mathematically,

To = pTP � TS.

In order to simplify the analysis, we assume that To is a non-negative quantity. This implies

that speedup is always bounded by p. For instance, speedup can be superlinear and To can

be negative if the memory is hierarchical and the access time increases (in discrete steps)

as the memory used by the program increases. In this case, the e�ective computation

speed of a large program will be slower on a serial processor than on a parallel computer

employing similar processors. The reason is that a sequential algorithm using M bytes of

memory will use only M
p
bytes on each processor of a p-processor parallel computer. The

core results of the paper are still valid with hierarchical memory, except that the scalability

and performance metrics will have discontinuities, and their expressions will be di�erent

in di�erent ranges of problem sizes. The at memory assumption helps us to concentrate

on the characteristics of the parallel algorithm and architectures, without getting into the

details of a particular machine.

For a given parallel system, To is normally a function of both W and p and we will often

write it as To(W;p).

E�ciency E : The ratio of speedup (S) to the number of processors (p). Thus, E = TS
pTP

=
1

1+ To
TS

.

Degree of Concurrency C(W ): The maximum number of tasks that can be executed si-

multaneously at any given time in the parallel algorithm. Clearly, for a given W , the

parallel algorithm can not use more than C(W ) processors. C(W ) depends only on the

parallel algorithm, and is independent of the architecture. For example, for multiplying

two N �N matrices using Fox's parallel matrix multiplication algorithm [9], W = N3 and

C(W ) = N2 =W 2=3. It is easily seen that if the processor-time product [1] is �(W ) (i.e.,

the algorithm is cost-optimal), then C(W ) � �(W ).
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Maximum Number of Processors Usable, pmax: The number of processors that yield max-

imum speedup Smax for a given W . This is the maximum number of processors one would

like to use because using more processors will not increase the speedup.

3 Minimizing the Parallel Execution Time

In this section we relate the behavior of the TP verses p curve to the nature of the overhead

function To. As the number of processors is increased, TP either asymptotically approaches

a minimum value, or attains a minimum and starts rising again. We identify the overhead

functions which lead to one case or the other. We show that in either case, the problem can be

solved in minimum time by using a certain number of processors which we call pmax. Using more

processors than pmax will either have no e�ect or will degrade the performance of the parallel

system in terms of parallel execution time.

Most problems have a serial component Ws | the part of W that has to be executed

sequentially. In this paper the sequential component of an algorithm is not considered as a

separate entity, as it can be subsumed in To. While one processor is working on the sequential

component, the remaining p� 1 are ideal and contribute (p� 1)Ws to To. Thus for any parallel

algorithm with a nonzero Ws, the analysis can be performed by assuming that To includes a

term equal to (p � 1)Ws. Under this assumption, the parallel execution time TP for a problem

of size W on p processors is given by the following relation:

TP =
W + To(W;p)

p
(1)

We now study the behavior of TP under two di�erent conditions.

3.1 Case I: To � �(p)

From Equation (1) it is clear that if To(W;p) grows slower than �(p), then the overall power of p

in the R.H.S. of Equation (1) is negative. In this case it would appear that if p is increased, then

TP will continue to decrease inde�nitely. If To(W;p) grows as fast as �(p) then there will be a

lower bound on TP , but that will be a constant independent of W . But we know that for any

parallel system, the maximum number of processors that can be used for a given W is limited

by C(W ). So the maximum speedup is bounded by WC(W )
W+To(W;C(W ))

for a problem of size W and

the e�ciency at this point of peak performance is given by W
W+To(W;C(W ))

. Figure 1 illustrates

the curve of TP for the case when To � �(p).

There are many important natural parallel systems for which the overhead function does not

grow faster than �(p). One such system is described in Example 1 below. Such systems typically

arise while using shared memory or SIMD machines which do not have a message startup time

for data communication.
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Figure 1: A typical TP verses p curve for To � �(p).

Example 1: Parallel FFT on a SIMD Hypercube

Consider a parallel implementation of the FFT algorithm [14] on a SIMD hypercube connected

machine (e.g., the CM-2 [20]). If an N point FFT is being attempted on such a machine with p

processors, N
p units of data will be communicated among directly connected processors in log p

of the logN iterations of the algorithm. For this parallel system W = N logN . As shown in

[14], To = tw � N
p log p � p = twN log p, where tw is the message communication time per word.

Clearly, for a given W , To < �(p). Since C(W ) for the parallel FFT algorithm is N , there is a

lower bound on parallel execution time which is given by (1 + tw) logN . Thus, pmax for an N

point FFT on a SIMD hypercube is N and the problem cannot be solved in less than �(logN)

time.

3.2 Case II: To > �(p)

When To(W;p) grows faster than �(p), a glance at Equation (1) will reveal that the term W
p

will keep decreasing with increasing p, while the term To
p
will increase. Therefore, the overall TP

will �rst decrease and then increase with increasing p, resulting in a distinct minimum. Now we

derive the relationship betweenW and p such that TP is minimized. Let p0 be the value of p for

which the mathematical expression on the R.H.S of Equation (1) for TP attains its minimum

value.

At p = p0, TP is minimum and therefore d
dp
TP = 0.
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For a given W , we can solve the above equation to �nd p0. A rather general form of the

overhead is one in which the overhead function is a sum of terms where each term is a product

of a function of W and a function of p. In most real life parallel systems, these functions

of W and p are such that To can be written as �i=n
i=1ciW

yi(logW )uipxi(log p)zi , where ci's are

constants and xi � 0 and yi � 0 for 1 � i � n, and ui's and zi's are 0's or 1's. The overhead

functions of all architecture-algorithm combinations that we have come across �t this form

[24, 25, 31, 14, 12, 15, 36, 35, 11]. As illustrated by a variety of examples in this paper,

these include important algorithms such as Matrix Multiplication, FFT, Parallel Search, �nding

Shortest Paths in a graph, etc., on almost all parallel architectures of interest.

For the sake of simplicity of the following analysis, we assume zi = 0 and ui = 0 for all

i's. Analysis similar to that presented below can be performed even without this assumption

and similar results can be obtained (Appendix A). Substituting �i=n
i=1ciW

yipxi for To(W;p) in

Equation (2), we obtain the following equation:

�i=n
i=1 cixiW

yipxi�1 =
W + �i=n

i=1ciW
yipxi

p

) W = �i=n
i=1ci(xi � 1)W yipxi (3)

For the overhead function described above, Equation (3) determines the relationship between

W and p for minimizing TP provided that To grows faster than �(p). Because of the nature of

Equation (3), it may not always be possible to express p as a function of W in a closed form. So

we solve Equation (3), considering one R.H.S. term at a time and ignoring the rest. If the ith

term is being considered, the relation W = ci(xi � 1)W yipxi yields p = ( W 1�yi

ci(xi�1))
1
xi = �(W

1�yi
xi ).

It can be shown (Appendix B) that among all the i solutions for p obtained in this manner,

the speedup is maximum for any given W when p = �(W
1�yj
xj ) where 1�yj

xj
�

1�yi
xi

for all i

(1 � i � n). We call the jth term of To the dominant term if the value of 1�yj
xj

is the least

among all values 1�yi
xi

(1 � i � n) because this is the term that determines the order of p0 -
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the solution to Equation (2) for large values of W and p. If jth term is the dominant term of

To, then solving Equation (3) with respect to the jth term on the R.H.S. yields the following

approximate expression for p0 for large values of W :

p0 � (
W 1�yj

cj(xj � 1)
)

1
xj (4)

The value of p0 thus obtained can be used in the expression for TP to determine the minimum

parallel execution time for a given W . The value of p0, when plugged in the expression for

e�ciency, yields the following:

E0 =
W

W + To

) E0 �
W

W + cjW
yj ( W

1�yj
xj

(cjxj�cj)
1
xj

)xj

) E0 � 1�
1

xj
(5)

Note that the above analysis holds only if xj, the exponent of p in the dominant term of To
is greater than 1. If xj � 1, then the asymptotically highest term in To (i.e., cjW yjpxj) is less

than or equal to �(p) and the results for the case when To � �(p) apply.

Equations (4) and (5) yield the mathematical values of p0 and E0 respectively. But the

derived value of p0 may exceed C(W ). So in practice, at the point of peak performance (in

terms of maximum speedup or minimum execution time), the number of processors pmax is

given by min(p0; C(W )) for a given W . Thus it is possible that C(W ) of a parallel algorithm

may determine the minimum execution time rather than the mathematically derived conditions.

The following example illustrates this case:

Example 2: Floyd's Striped Shortest Path Algorithm on Mesh

A number of parallel Shortest Path algorithms are discussed in [25]. Consider the implementation

of Floyd's algorithm in which the N � N adjacency matrix of the graph is striped among p

processors such that each processor stores N
p full rows of the matrix. The problem size W here

is given by N3 for �nding all to all shortest paths on an N -node graph. In each of the N

iterations of this algorithm, a processor broadcasts a row of length N of the adjacency matrix

of the graph to every other processor. As shown in [25], if the p processor are connected in a

mesh con�guration with cut-through routing, the total overhead due to this communication is

given by To = tsNp1:5+ tw(N +
p
p)Np. Here ts and tw are constants related to message startup

time and the speed of message transfer respectively. Since tw is often very small compared to ts,

To = (ts+ tw)Np1:5+ twN
2p � tsNp1:5+ twN

2p = tsW
1=3p1:5+ twW

2=3p. From Equation (3), p0
is equal to (W

2=3

:5ts
)2=3 � 1:59N4=3

t
2=3
s

. But since at most N processors can be used in this algorithm,

8



pmax = min(C(W ); p0) = N . The minimum execution time for this parallel system is therefore

N2 + tsN
1:5 + twN

2 for pmax = N .

If working on a 100 node graph, then the speedup will peak at p = N = 100 and for ts = 1

and tw = 0:1, the speedup will be 83.33 resulting in an e�ciency of 0.83 at the point of peak

performance.

It is also possible for two parallel systems to have the same To (and hence the same p0)

but di�erent C(W )s. In such cases, an analysis of the overhead function might mislead one

into believing that the two parallel systems are equivalent in terms of maximum speedup and

minimum execution time. Example 3 below illustrates the case when the speedup peaks at

p = po. The algorithm in Example 2 has exactly the same To and hence the same po, but the

speedup peaks at p = C(W ) because C(W ) < po. Thus the two parallel systems described

in Examples 2 and 3 are grossly di�erent in terms of their peak performances, although their

overhead functions are the same.

0
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"
Tp

p!

Figure 2: TP verses p curve for To > �(p) showing Tmin
P when C(W ) < p0.

Example 3: Floyd's Checkerboard Shortest Path Algorithm on Mesh

In this example, we consider a di�erent parallel system consisting of another variation of Floyd's

algorithm discussed in [25] and a wrap-around mesh with store-and-forward routing. In this

algorithm, the N � N adjacency matrix is partitioned into p sub-blocks of size Np
p �

Np
p each,

and these sub-blocks are mapped on a p processor mesh. In this version of Floyd's algorithm, a

processor broadcasts Np
p elements among

p
p processors in each of the N iterations. As shown
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Figure 3: TP verses p curve for To > �(p) showing Tmin
P when C(W ) > p0.

in [25], this results in a total overhead of To = tsNp1:5 + twN
2p. Since the expression for To is

same as that in Example 2, p0 =
1:59N4=3

t
2=3
s

again. But C(W ) for the checkerboard version of the

algorithm is W 2=3 = N2. Therefore pmax = p0 in this case as p0 < C(W ).

For ts = 1 and tw = 0:1, Equation (3) yields a value of po = 738 for a 100 node graph. The

speedup peaks with 738 processors at a value of 246, but the e�ciency at this peak speedup is

only 0.33.

Figures 2 and 3 graphically depict TP as a function of p corresponding to Examples 2 and 3

respectively.

3.3 Minimizing TP and the Isoe�ciency Function

In this section we show that for a wide class of overhead functions, studying a parallel system

at its peak performance in terms of the speedup is equivalent to studying its behavior at a

�xed e�ciency. The isoe�ciency metric [22, 10, 23] comes in as a handy tool to study the �xed

e�ciency characteristics of a parallel system. The isoe�ciency function relates the problem size

to the number of processors necessary for an increase in speedup in proportion to the number of

processors used. If a parallel system incurs a total overhead of To(W;p) while solving a problem

of size W on p processors, the e�ciency of the system is given by E = 1

1+
To(W;p)

W

. In order

to maintain a constant e�ciency, W / To(W;p) or W = KTo(W;p) must be satis�ed, where

K = E
1�E is a constant depending on the e�ciency to be maintained. This is the central relation

that is used to determine isoe�ciency as a function of p. From this equation, the problem size
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W can usually be obtained as a function of p by algebraic manipulations. If the problem size

W needs to grow as fast as fE(p) to maintain an e�ciency E, then fE(p) is de�ned to be the

isoe�ciency function of the parallel algorithm-architecture combination for e�ciency E.

We now show that unless pmax = C(W ) for a parallel system, a unique e�ciency is attained

at the point of peak performance. This value of E depends only on the characteristics of the

parallel system (i.e., the type of overhead function for the algorithm-architecture combination)

and is independent of W or TP . For the type of overhead function assumed in Section 3.2, the

following relation determines the isoe�ciency function for an e�ciency E.

W =
E

1 � E
�i=n
i=1ciW

yipxi (6)

Clearly, this equation has the same form as Equation (3), but has di�erent constants. The

dominant term on the R.H.S will yield the relationship between W and p in a closed form in

both the equations. If this is the jth term, then both the equations will become equivalent

asymptotically if their jth terms are same. This amounts to operating at an e�ciency that is

given by the following relation obtained by equating the coe�cients of the jth terms of Equations

(3) and (6).

E

1� E
cj = cj(xj � 1)

) E = 1 �
1

xj

The above equation is in conformation with Equation (5). Once we know that working at

the point of peak performance amounts to working at an e�ciency of 1� 1
xj
, then, for a givenW ,

we can �nd the number of processors at which the performance will peak by using the relation

1� 1
xj

= W
W+To(W;p) .

As discussed in [22, 10], the relation between the problem size and the maximum number

of processors that can be used in a cost-optimal fashion for solving the problem is given by

the isoe�ciency function. Often, using as many processors as possible results in a non-cost-

optimal system. For example, adding n numbers on an n-processor hypercube takes �(log n)

time, which is the minimum execution time for this problem. This is not a cost optimal parallel

system because W = �(N) < pTP = �(n log n). An important corollary of the result presented

in this section is that for the parallel systems for which the relationship between the problem

size and the number of processors for maximum speedup (minimum execution time) is given by

the isoe�ciency function, the asymptotic minimum execution time can be attained in a cost-

optimal fashion. For instance, if �( n
logn) processors are used to add n numbers on a hypercube,

the parallel system will be cost-optimal and the parallel execution time will still be �(log n).

Note that the correspondence between the isoe�ciency function and the relation between

W and p for operating at minimum TP will fail if the xj in the dominant term is less than or

equal to 1. In this case, a term other than the one that determines the isoe�ciency function

will determine the condition for minimum TP .
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3.4 Summary of Results

At this point we state the important results of this section.

. For parallel algorithms with To � �(p), the maximum speedup is obtained at p = C(W ) and

for algorithms with To > �(p), the maximum speedup is obtained at p = min(po; C(W )),

where p0 for a given W is determined by solving Equation (3).

. For the parallel algorithms with To of the form described in Section 3.2, if the jth term is

the dominant term in the expression for To and xj > 1, then the e�ciency at the point of

maximum speedup always remains the same irrespective of the problem size, and is given

by E = 1 � 1
xj
.

. For the parallel algorithms satisfying the above conditions, the relationship between the

problem size and the number of processors at which the speedup is maximum for that

problem size, is given by the isoe�ciency function for E = 1 � 1
xj
, unless pmax = C(W ).

4 Minimizing p(TP )r

From the previous sections, it is clear that operating at a point where TP is minimummight not

be a good idea because for some parallel systems the e�ciency at this point might be low. On

the other hand, the maximum e�ciency is always attained at p = 1 which obviously is the point

of minimum speedup. Therefore, in order to achieve a balance between speedup and e�ciency,

several researchers have proposed to operate at a point where the value of p(TP )r is minimized

for some constant r (r � 1) and for a given problem size W [8, 6, 33]. It can be shown [33] that

this corresponds to the point where ESr�1 is maximized for a given problem size.

p(TP )
r = pTP (

W

S
)r�1 =

W r

ESr�1

Thus p(TP )r will be minimum when ESr�1 is maximum for a given W and by minimizing

p(TP )r, we are choosing an operating point with a concern for both speedup and e�ciency, their

relative weights being determined by the value of r.

Now let us locate the point where p(TP )r is minimum.

p(TP )r = p(Te+To
p

)r = p1�r(Te + To)r

Again, as in the previous section, the following two cases arise:

4.1 Case I: To � �(p
r�1
r )

Since p(TP )r = p1�r(Te + To)r = (Tep
1�r
r + Top

1�r
r )r, if To � �(p

r�1
r ) then the overall power

of p in the expression for p(TP )r will become negative and hence its value will mathematically

tend to some lower bound as p;1. Thus using as many processors as are feasible will lead to

minimum p(TP )r. In other words, for this case, p(TP )r is minimum when p = C(W ).
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4.2 Case II: To > �(p
r�1
r )

If To grows faster than �(p
r�1
r ), then we proceed as follows. In order to minimize p(TP )r,

d
dp

p(TP )
r should be equal to zero.

(1 � r)p�r(Te + To)
r + rp(1�r)(Te + To)

(r�1) d

dp
To = 0

)
d

dp
To =

r � 1

r
TP (7)

We choose the same type of overhead function as in Section 3.2. Substituting �i=n
i=1ciW

yipxi

for To in Equation (7), we get the following equation:

�i=n
i=1cixiW

yipxi�1 =
r � 1

rp
(W + �i=n

i=1 ciW
yipxi)

) W = �i=n
i=1ci(

rxi

r � 1
� 1)W yipxi (8)

Now even the number of processors for which p(TP )r is minimum could exceed the value of

p that is permitted by the degree of concurrency of the algorithm. In this case the minimum

possible value for p(TP )r will be obtained when C(W ) processors are used. The following

example illustrates this case.

Example 4: Matrix Multiplication on Mesh

Consider a simple algorithm described in [12] for multiplying two N �N matrices on a
p
p�pp

wrap-around mesh. As the �rst step of the algorithm, each processor acquires all those elements

of both the matrices that are required to generate the N2

p elements of the product matrix which

are to reside in that processor. For this parallel system,W = N3 and To = tsp
p
p+ twN

2pp. For
determining the operating point where p(TP )2 is minimum, we substitute n = 2, r = 2, c1 = ts,

c2 = tw , x1 = 1:5, x2 = 0:5, y1 = 0 and y2 = 2
3 in Equation (8). This substitution yields the

relation W = 2tsp1:5 for determining the required operating point. In other words, the number of

processors p0 at which p(TP )
2 is minimum is given by p0 = (W2ts)

2=3 = N2

(2ts)2=3
. But the maximum

number of processors that this algorithm can use is only N2. Therefore, for ts < :5, p0 > C(W )

and hence C(W ) processors should be used to minimize pT 2
P .

4.3 Minimizing p(TP )
r and the Isoe�ciency Function

In this subsection we show that for a wide class of parallel systems, even minimizing p(TP )r

amounts to operating at a unique e�ciency that depends only on the overhead function and

the value of r. In other words, for a given W , p(TP )r is minimum for some value of p and the

relationship betweenW and this p for the parallel system is given by its isoe�ciency function for

a unique value of e�ciency that depends only on r and the type of overhead function. Equation

13



(8), which gives the relationship between W and p for minimum p(TP )r, has the same form as

Equation (6) that determines the isoe�ciency function for some e�ciency E. If the jth terms of

the R.H.S.s of Equations (6) and (8) dominate (and xj >
r�1
r
), then the e�ciency at minimum

p(TP )r can be obtained by equating the corresponding constants; i.e., Ecj
1�E and cj(

rxj
r�1�1). This

yields the following expression for the value of e�ciency at the point where p(TP )r is minimum:

E = 1�
r � 1

rxj
(9)

The following example illustrates how the analysis of Section 4 can be used for chosing an

appropriate operating point (in terms of p) for a parallel algorithm to solve a problem instance

of a given size. It also con�rms the validity of Equation (9).

Example 5: FFT on a Hypercube

Consider the implementation of the FFT algorithm on an MIMD hypercube using the binary-

exchange algorithm. As shown in [14], for an N point FFT on p processors, W = N logN and

To = tsp log p+ twN log p for this algorithm. Taking ts = 2, tw = 0:1 and rewriting the expression

for To in the form described in Section 3.2, we get the following:

To � 2p log p+ 0:1
W

logW
log p

Now suppose it is desired to minimize p(TP )2, which is equivalent to maximizing the ES product.

Clearly, the �rst term of To dominates and hence putting r = 2 and xj = 1 in Equation (9), an

e�ciency of 0.5 is predicted when p(TP )
2 is minimized. An analysis similar to that in Section

4.2 will show that p(TP )
r will be minimum when p � N

2 is used.

If a 1024 point FFT is being attempted, then Table I shows that at p = 512 the ES product is

indeed maximum and the e�ciency at this point is indeed 0.5.

Again, just like in Section 3.3, there are exceptions to the correspondence between the

isoe�ciency function and the condition for minimum p(TP )r. If the jth term in Equation (6)

determines the isoe�ciency function and in Equation (8), xj <
r�1
r
, then the coe�cient of the

jth term in Equation (8) will be zero or negative and some other term in Equation (8) will

determine the relationship between W and p for minimum p(TP )r.

The following subsection summarizes the results of this section.

4.4 Summary of Results

. For parallel algorithms with To � �(p
r�1
r ), the minimum value for the expression p(TP )r

is attained at p = C(W ) and for algorithms with To > �(p
r�1
r ), it is attained at p =

min(C(W ); p0), where p0 for a given W is obtained by solving Equation (8).
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Table I

Performance of FFT on a hypercube with N = 1024, ts = 2 and tw = 0:1.

p TP S E E � S

128 99.6 103 .80 82.4

256 59.2 173 .68 117.6

384 46.1 222 .58 128.4

512 39.8 257 .50 129.3

640 36.1 284 .44 124.9

768 33.8 303 .39 116.2

896 32.2 318 .35 112.8

1024 31.0 330 .32 105.5

. For the parallel algorithms with To of the form described in Section 3.2, if the jth term

dominates in the expression for To and xj > r�1
r
, then the e�ciency at the point of

minimum p(TP )r always remains same irrespective of the problem size and is given by

E = 1� r�1
rxj

.

. For the parallel algorithms satisfying the above conditions, the relationship between the

problem size and the number of processors at which p(TP )r is minimum for that problem

size, is given by the isoe�ciency function for E = 1� r�1
rxj

, provided C(W ) > p0 determined

from Equation (8).

In fact the results pertaining to minimization of TP are special cases of the above results

when r ; 1, i.e.; the weight of p is zero with respect to TP or the weight of E is zero with

respect to S. Equation (3) can be derived from Equation (8) and Equation (5) from Equation

(9) if r�1
r

is replaced by limr;1
r�1
r

= 1.

5 Signi�cance in the Context of Related Research

In this section we discuss how this paper encapsulates several results which have appeared in

the literature before and happen to be special cases of the more general results presented here.

Flatt and Kennedy [8, 7] show that if the overhead function satis�es certain mathematical

properties, then there exists a unique value p0 of the number of processors for which TP is

minimum for a given W . A property of To on which their analysis depends heavily is that

To > �(p).1 This assumption on the overhead function limits the range of the applicability of

their analysis. As seen in Section 3.1 and Example 1, there exist parallel systems for which do

1To, as de�ned in [8], is the overhead incurred per processor when all costs are normalized with respect to

W = 1. So in the light of the de�nition of To in this paper, the actual mathematical condition of [8], that To is
an increasing nonnegative function of p, has been translated to the condition that To grows faster than �(p).
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not obey this condition, and in such cases the point of peak performance is determined by the

degree of concurrency of the algorithm being used.

Flatt and Kennedy show that the maximumspeedup attainable for a given problem is upper-

bounded by 1
d
dp

(pTP )
at p = p0. They also show that the better a parallel algorithm is (i.e., the

slower To grows with p), the higher is the value of p0 and the lower is the value of e�ciency

obtained at this point. Equations (4) and (5) in this paper provide results similar to Flatt

and Kennedy's. But the analysis in [8] tends to conclude the following - (i) if the overhead

function grows very fast with respect to p, then p0 is small, and hence parallel processing cannot

provide substantial speedups; (ii) if the overhead function grows slowly (i.e., closer to �(p)),

then the overall e�ciency is very poor at p = p0. Note that if we keep improving the overhead

function, the mathematically derived value of p0 will ultimately exceed the limit imposed by the

degree of concurrency on the number of processors that can be used. Hence, in practice no more

than C(W ) processors will be used. Thus, in this situation, the theoretical value of p0 and the

e�ciency at this point does not serve a useful purpose because the point of peak performance

e�ciency cannot be worse than W
W+To(W;C(W ))

. For instance, Flatt and Kennedy's analysis will

predict identical values of pmax and e�ciency at this operating point for the parallel systems

described in Examples 2 and 3 because their overhead functions are identical. But as we saw in

these examples, this is not the case because the the value of C(W ) in the two cases is di�erent.

In [27], Marinescu and Rice develop a model to describe and analyze a parallel computation

on a MIMD machine in terms of the number of threads of control p into which the computation is

divided and the number events g(p) as a function of p. They consider the case where each event

is of a �xed duration � and hence To = �g(p). Under these assumptions on To, they conclude that

with increasing number of processors, the speedup saturates at some value if To = �(p), and it

asymptotically approaches zero if To = �(pm), where m � 2. The results of Sections 3.1 and 3.2

are generalizations of these conclusions for a wider class of overhead functions. In Section 3.1

we show that the speedup saturates at some maximum value if To � �(p), and in Section 3.2

we show that speedup will attain a maximum value and then it will drop monotonically with p

if To > �(p).

Usually, the duration of an event or a communication step � is not a constant as assumed in

[27]. In general, both � and To are functions of W and p. If To is of the form �g(p), Marinescu

and Rice [27] derive that the number of processors that will yield maximum speedup will be

given by p = (W
�
+ g(p)) 1

g0(p) , which can be rewritten as �g0(p) = W+�g(p)
p

. It is easily veri�ed

that this is a special case of Equation (2) for To = �g(p).

Worley [37] showed that for certain algorithms, given a certain amount of time TP , there

will exist a problem size large enough so that it cannot be solved in time TP , no matter how

many processors are used. In Section 3, we describe the exact nature of the overhead function

for which a lower bound exists on the execution time for a given problem size. This is exactly

the condition for which, given a �xed time, an upper bound will exist on the size of the problem

that can be solved within this time. We show that for a class of parallel systems, the relation

between problem size W and the number of processors p at which the parallel execution time

TP is minimized, is given by the isoe�ciency function for a particular e�ciency.
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Several other researchers have used the minimum parallel execution time of a problem of a

given size for analyzing the performance of parallel systems [28, 26, 30]. Nussbaum and Agarwal

[30] de�ne scalability of an architecture for a given algorithm as the ratio of the algorithm's

asymptotic speedup when run on the architecture in question to its corresponding asymptotic

speedup when run on an EREW PRAM. The asymptotic speedup is the maximum obtainable

speedup for a given problem size if an unlimited number of processors is available. For a �xed

problem size, the scalability of the parallel system, according to their metric, depends directly on

the minimum TP for the system. For the class of parallel systems for which the correspondence

between the isoe�ciency function and the relation between W and p for minimizing TP exists,

Nussbaum and Agarwal's scalability metric will yield results identical to those predicted by the

isoe�ciency function on the behavior of these parallel systems.

Eager et. al. [6] and Tang and Li [33] have proposed a criterion of optimality di�erent

from optimal speedup. They argue that the optimal operating point should be chosen so that

a balance is struck between e�ciency and speedup. It is proposed in [6] that the \knee" of the

execution time verses e�ciency curve is a good choice of the operating point because at this

point the incremental bene�t of adding processors is roughly 1
2
per processor, or, in other words,

e�ciency is 0.5. Eager et. al. and Tang and Li also conclude that for To = �(p), this is also

equivalent to operating at a point where the ES product is maximum or p(TP )2 is minimum.

This conclusion in [6, 33] is a special case of the more general case that is captured in Equation

(9). If we substitute xj = 1 in Equation (9) (which is the case if To = �(p)), it can seen that we

indeed get an e�ciency of 0.5 for r = 2. In general, operating at the optimal point or the \knee"

referred to in [6] and [33] for a parallel system with To = �(pxj) will be identical to operating

at a point where p(TP )r is minimum, where r = 2
2�xj . This is obtained from Equation (9) for

E = 0:5. Minimizing p(TP )r for r >
2

2�xj will result in an operating point with e�ciency lower

than 0.5 but a higher speedup. On the other hand, minimizing p(TP )r for r <
2

2�xj will result

in an operating point with e�ciency higher than 0.5 and a lower speedup.

In [21], Kleinrock and Huang state that the mean service time for a job is minimumfor p =1,

or for as many processors as possible. This is true only under the assumption that To < �(p).

For this assumption to be true, the parallel system has to be devoid of any global operation

(such as broadcast, and one-to-all and all-to-all personalized communication [3, 19]) with a

message passing latency or message startup time. The reason is that such operations always

lead to To � �(p). This class of algorithms includes some fairly important algorithms such

as matrix multiplication (all-to-all/one-to-all broadcast) [12], vector dot products (single node

accumulation) [15], shortest paths (one-to-all broadcast) [25], and FFT (all-to-all personalized

communication) [14], etc. The readers should note that the presence of a global communication

operation in an algorithm is a su�cient but not a necessary condition for To � �(p).
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Appendix A

Let To(W;p) = �i=n
i=1 ciW

yi(logW )uipxi(log p)zi , where ci's are constants and xi � 0 and yi � 0

for 1 � i � n, and ui's and zi's are 0's or 1's. Now let us compute d
dp
To(W;p).

To(W;p) = �i=n
i=1ciW

yi(logW )uipxi(log p)zi

d

dp
To(W;p) = �i=n

i=1 ciW
yi(logW )ui(xip

xi�1(log p)zi + zip
xi�1(log p)zi�1)

If all zi's are either 0 or 1, then the above equations can be rewritten as:

d

dp
To(W;p) = �i=n

i=1ciW
yi(logW )ui(xip

xi�1(xi log p)
zi + zi)

d

dp
To(W;p) � �i=n

i=1cixiW
yi(logW )uixip

xi�1

Equating d
dp
To(W;p) to TP according to Equation 2,

�i=n
i=1cixiW

yi(logW )uixip
xi�1 =

W + �i=n
i=1 ciW

yi(logW )uipxi(log p)zi

p

W = �i=n
i=1 ci(xi � 1)W yi(logW )uipxi(log p)zi (10)

The above equation determines the relation between W and p for which the parallel execution

time is minimized. The equation determining the isoe�ciency function for the parallel system

with the overhead function under consideration will be as follows (see discussion in Section 3.3):

W =
E

1� E
�i=n
i=1ciW

yi(logW )uipxi(log p)zi (11)

Comparing Equations 10 and 11, if the jth term in To is the dominant term and xj > 1, then

the e�ciency at the point of minimum parallel execution time will be given by E0 � 1 � 1
xj
.

Appendix B

From Equation 3, the relation betweenW and p0 is given by the solution for p from the following

equation:

W = �i=n
i=1ci(xi � 1)W yipxi

If the jth term on R.H.S. of the above is the dominant term according to the condition described

in Section 3.2, then we take p0 � ( W
1�yj

cj(xj�1))
1
xj as the approximate solution. Now we show that

the speedup is indeed (asymptotically) maximum for this value of p0.

S =
Wp

W + To(W;p)
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Since the maximum speedup condition is true in asymptotics, we will drop the constants and

write order expressions only on the R.H.S..

S = O(
W �W

1�yj
xj

W + �i=n
i=1 (W

yi �W
1�yj
xj

xi
)

)

S = O(
W

1+
1�yj
xj

W + �i=n
i=1W

yi+
1�yj
xj

xi
)

The summation �i=n
i=1W

yi+
1�yj
xj

xi
in the denominator on the R.H.S. is at least 
(W ), because

for i = j, W
yi+

1�yj
xj

xi
= W . So we can ignore the �rst W in the denominator. Rewriting the

expression for speedup, we get:

S = O(
W

1+
1�yj
xj

�i=n
i=1W

yi+
1�yj
xj

xi
)

S = O(
1

�i=n
i=1W

yi�1+(
1�yj
xj

�1)xi
)

Clearly, the above expression will be maximum when the denominator is minimum, which will

happen for the minimum possible value of 1�yj
xj

.

21


