
 

Random sampling and study population with regard the relationship 

between birth weight and infant mortality 

Abstract

 

We almost always have to deal with samples with limited and varying information. With a 

random sample of births, how do we examine the relationship between birth weight

 

and 

infant mortality? What kind of accuracy can we expect and how does it depend on the size of 

the sample? Does it matter how we select the births to be sampled? We must confront the 

following issues:The methods for addressing these questions depend on how we draw the 

random sample from the population. In this chapter, we consider simple forms of random 

sampling and their broad impact on the answers to these questions. In the following chapters, 

we discuss both the statistical significance of an observed sample association and estimation 

of various measures of association.

 

Introduction

 

Before discussing study designs, we describe nested components of the population of interest. 

The Target Population

 

refers to the population to which we would like to apply our estimates 

and inferences regarding the relationship between disease and exposure. Sometimes, it can be 

extremely difficult to sample directly from the Target Population; in such cases, there is often 

a convenient subgroup of the population for which appropriate sampling frames are available. 

We call this subgroup the Study Population,

 

the population from which we are able to 

sample. Finally, the Sample

 

comprises the actual sampled individuals from the Study 

Population for whom we collect data on disease, exposure, and other factors. Figure 5.1 is a 

schematic of these three groups. Note that the figure is not intended to be representative of 

scale. Typically the Study Population is a very large fraction of the Target Population, 

whereas the Sample is extremely small relative to the Study and Target Populations. For 

example, in many studies, a telephone interview may be used to collect information on study 

subjects. In these surveys, the Study Population comprises individuals in families that possess 

a residential telephone. As another example (Section 3.5), the Target Population might be the 

general community from which one might be tempted—with great risk as we have seen—to 

use individuals with hospital or clinic records as a convenient Study Population. The exercises at 
the end of this chapter contain several examples of epidemiological studies of various designs, 
illustrating possible choices of Study Populations within a given Target Population.

 

Intelligent choice of Study Populations will help us investigate our primary interest, the 

relationship between E
 
and D. While selecting an appropriate Study Population is often 

predicated on the availability of sampling frames and other sampling mechanics,
 
there are 

situations where the choice is based on the need to obtain valid comparisons for estimating an 

effect measure. This is particularly true in the cohort and case-control designs of Sections 5.2 

and 5.3. On the other hand, differences between the Target Population and Study Population 

introduce selection bias
 
in our results if the Study Population is not representative of the 

Target Population with regard to the disease-exposure relationship
 
of concern. This does not 

necessarily require that the Study Population is representative of all aspects of the Target 

Population. However, when random sampling is used, differences between the Sample and 



the Study Population are entirely due to random or sampling variation associated with the 

sampling technique employed. We can then use statistical methods to assess and describe 

these differences based on a detailed understanding of sampling procedures and variation. If 

the study sample is not selected randomly, we can treat the data in the same manner but 

without the same confidence in the calculations. Substantial bias can be introduced at this 

point if factors, often unmeasured or unknown, influencing the sample selection is associated 

with exposure and disease. 

How do we usually obtain a random study sample from the Study Population? Three basic 

forms of sampling schemes are most commonly used in epidemiological studies. In each, we 

restrict attention to the association between the presence and absence of two binary factors, 

the outcome D and the exposure E, since the basic concept and the primary statistical impact 

of the designs are all captured even in this simplest scenario. Note that the sample data from 

any of the designs can be summarized in the form of a 2×2 contingency table as illustrated in 

Table 5.1. The rest of this chapter describes the three typical designs in terms of their 

statistical characteristics, determined by how study participants are sampled.  

1 Population-based studies 

The main steps of a population-based design are simply: 

1. Take a simple random sample of size n from the Study Population. 

2. Subsequently, measure the presence and absence of both D and E for all sampled 

individuals. 

Note that the word ―subsequently‖ here refers to the order of sampling individuals and 

measuring the factors, D and E, for the sample; there are no requirements on the 

chronological timing of events that determine D and E relative to the time of sampling. A 

further sub-classification of the design is often used to differentiate the timing of 

measurements on D and E. Specifically, Rothman and Greenland (1998) refer to a 

prospective study as one in which measurement of exposure is made on an individual prior to 

the occurrence and thus measurement of disease. Conversely, in a retrospective study, 

measurement of exposure occurs after an individual’s disease status has been determined. A 

population-based study is often loosely called a cross-sectional study, but I prefer the former 

name as the latter suggests that measurement of D and E always coincides with sampling. 

Whether a study is prospective or retrospective is not relevant to the study design and 

therefore not of immediate concern to the development of statistical properties. However, this 

classification may have considerable influence on the quality and validity of exposure 

measurement. For example, exposure assessment in a retrospective design must (1) evaluate 

the relevant risk levels in place before disease, and not after, and (2) ensure that 

measurements are not influenced by an individual’s disease status. Note that prospective 

measurement of D may require a 10- or 20-year follow-up period after sampling. 

The various types of population probabilities that may be of interest to the investigator can be 

classified as follows: 

• Joint probabilities:  



• Marginal probabilities:  

• Conditional probabilities:  

Each of these kinds of probabilities can be estimated using data generated from a population-

based sample: estimates are given by the observed proportion of the simple random sample 

that corresponds to the population probability of interest.  

In Chapter 3, we introduced data on the role of a mother’s marital status or her baby’s 

birthweight on subsequent infant mortality. A natural follow-up question is the extent to 

which the impact of marital status on infant mortality might be explained by birthweight. 

That is, it is plausible that unmarried women may receive poorer nutrition and prenatal care 

than married mothers-to-be, and thus deliver lower birth weight babies on average, which, in 

turn, would raise the risk of infant mortality substantially. To examine the relationship 

between marital status and birth weight, an investigator needs to collect data on these two 

factors in the population of interest. 

Suppose that a sample size of 200 has been chosen for a population-based study. That is, a 

simple random sample of 200 births is selected from the Study Population. Table 5.2 shows a 

possible outcome of such a study. From this population-based data, we can then estimate: 

• Joint probabilities, such as (unmarried mother and low birth weight infant)= 7/200=0.035 

• Marginal probabilities, such as (low birth weight infant) =14/200=0.07 

• Conditional probabilities, such as (low birth weight infant/unmarried mother)= 

7/59=0.119, or (low birth weight infant/married mother)=7/141 = 0.050. 

Sensible estimates can be obtained of the Relative Risk, Odds Ratio, Excess Risk, and 

Attributable Risk for a low-birth weight infant associated with the mother’s marital status 

using the relevant estimates of the conditional probabilities etc. in the 

definitions of a particular effect measure. We will discuss these estimates in more detail in 

the next chapter. For now, we see that 

• =(7/59)/(7/141)=2.39 

• =[(7/59)/(52/59)]/[(7/141)/(134/141)]=2.58 

• =(7/59)–(7/141)=0.069 

• =[(14/200)–(7/141)]/(14/200)=0.29. 

Note the (by-now familiar) slightly higher value for the Odds Ratio as compared with the 

Relative Risk. The estimate of the Attributable Risk suggests that close to 30% of low birth 

weights in the population are attributable to the mother’s marital status. Maternal marital 

status is presumably not casually associated with low birth weight but a proxy for poorer 

prenatal care and nutrition, as suggested earlier. 



5.2  

The primary feature of a cohort study is that sampling is carried out separately for 

subpopulations at different exposure levels, leading to distinct cohorts. The main steps of a 

cohort design are: 

1. Identify two subgroups of the population on the basis of the presence or absence of E. 

2. Take a simple random sample from each of these two subgroups (that is, the Es and not Es) 

separately, of sizes nE and respectively. 

3. Measure subsequently the presence and absence of D for individuals in both random 

samples. 

As for population-based studies, the timing and manner of measurement of the two factors D 

and E are not pertinent to the sampling characteristics of a cohort design. The key statistical 

property of the design is the separate identification and sampling of the exposure groups. 

When and how D and E are measured are important considerations in assessing the potential 

accuracy and bias in disease and exposure measurement, but are not germane to the direct 

statistical impact of the design itself. 

Note that the investigator has to pre-specify the sample sizes for the two separate samples 

taken from the exposure groups. This division of the overall sample size is important in 

determining the amount of information that a cohort study yields on the disease-exposure 

relationship, as we shall discuss further. For an extreme example, if one exposure group is 

allocated a very small sample size, then there will be little information available on the 

disease-exposure relationship. 

Table 5.3 shows a possible outcome of a cohort study using the same population as for the 

population-based design in Section 5.1.1. Here, we have selected two random samples, each 

of size 100, the first from the population of unmarried mothers and the second from married 

mothers. This design assumes that, prior to sampling, one is able to divide the population by 

marital status into two distinct sampling frames.  

Data arising from such a cohort design have the following implications for estimation of 

population probabilities: 

• Joint probabilities cannot be estimated—clearly, frequencies of joint characteristics such as 

unmarried mothers with low birthweight babies are artificially influenced by the exact 

allocation of the number of unmarried mothers sampled from the total sample of 200. 

• Marginal probabilities are not estimable for the same reason. 

• Only conditional probabilities that condition on exposure status can be estimated, such as 

(low birth weight infant|unmarried mother)=12/100 = 0.120, or 

(low birth weight infant|married mother)=5/100= 0.050. 



The estimable conditional probability estimates provide essentially the same picture as those 

yielded by the population-based study of the same population (although the precision of these 

estimates may not be the same, but this is getting ahead of us). 

Although only some basic conditional probabilities are estimable from a cohort design, these 

are fortunately the basic building blocks of the Relative Risk, Odds Ratio, and the Excess 

Risk. The Attributable Risk is not directly estimable from a cohort study because we cannot 

estimate P(E). From Table 5.3 we can estimate 

• =(12/100)/(5/100)=2.40 

• =[(12/100)/(88/100)]/[(5/100)/(95/100)]=2.59 

• =(12/100)–(5/100)=0.070. 

Again, these estimates are compatible with those provided by the population-based data from 

the same population. 

5.3 Disease-based sampling—case-control studies 

A case-control study has the same specifications as a cohort study, except that the roles of E 

and D are reversed. Separate samples are thus selected from cases (D) and nondiseased 

individuals or controls The main steps of the design are: 

1. Identify two subgroups of the population on the basis of the presence or absence of D. 

2. Take a simple random sample from each of these two subgroups (that is, the Ds and not 

Ds) separately, of sizes nD and respectively. 

3. Measure subsequently the presence and absence of E for individuals in both random 

samples. 

As for cohort designs, the investigator must prespecify the number of cases and controls 

selected in the two separate random samples. Table 5.4 describes a possible outcome of a 

case-control study of mother’s marital status and infant birthweight using samples of 100 

cases (D) and 100 controls (not D). Here, implementing the design involves sampling first 

100 low birthweight infants and then taking a further random sample of 100 normal 

birthweight infants. This again assumes that two sampling frames, one of low birth weight 

infants in the population and the other of normal birth weight infants, are accessible to the 

investigator. 

For similar reasons as in cohort designs, only a limited set of probabilities can be estimated 

using case-control data: 

• Joint probabilities cannot be estimated—frequencies of joint characteristics are again 

artificially influenced by the exact allocation of the number of low birthweight babies 

sampled from the total sample of 200. 

• Marginal probabilities are not available for the same reason. 



• Only conditional probabilities that condition on outcome status, here infant birth-weight, 

can be estimated such as (unmarried mother|low birth-weight 

infant)=50/100=0.500, or (unmarried mother|normal birthweight 

infant)=28/100=0.280. 

At first glance, it seems unlikely that we can estimate any measure of association from a 

case-control design. This is indeed partly true in that it is impossible to estimate the Relative 

Risk or the Excess Risk with case-control data. However, we can directly estimate the Odds 

Ratio for E associated with D, given by [P(E|D)]/ [P(not E|D)]/[P(E|not D)]/[P(not E|not 

D)], and then take advantage of the fact that this is identical to the Odds Ratio for D 

associated with E (using the symmetry of the roles of disease and exposure in the definition 

of the Odds Ratio that we highlighted in Section 4.4). Thus, from Table 5.4, 

 

  

compatible with the estimates provided by the population-based and cohort data. 

In a situation where the outcome D is rare in both exposed and unexposed populations, the 

Odds Ratio will closely approximate the Relative Risk so that the case control estimate of the 

Odds Ratio can be used as an approximate estimate of the Relative Risk. It was, in part, this 

observation—that case-control studies can still be used to estimate Relative Risks in rare 

disease settings (Cornfield, 1951)—that led to their increased popularity as a study design 

over the past 50 years. The first modern use of the design was a study of the effect of 

reproductive history on the incidence of breast cancer (Lane-Claypon, 1926). The next 

section shows that the rare disease assumption is unnecessary for estimating the Relative Risk 

or Relative Hazard from case-control data if clever adjustments are made in the sampling of 

controls.  

The Attributable Risk also appears to be inestimable from a case-control design. However, in 

the rare disease setting, we can again obtain an approximation; to see this, we first need some 

algebraic work to derive an alternative formulation for AR. Recall from section 4.7 that 

Now. 

 

  

The last step following from the definition of RR. Hence, 

 

  

using Bayes’ formula twice (see Section 3.4). It follows that 



 

(5.1) 

From case-control data we can estimate P(E|D) directly, and then with the rare disease 

assumption estimate RR approximately by the estimate of the Odds Ratio. With the data of 

Table 5.4, this approach yields 

 

  

which is very similar to the estimate obtained from the population-based data of Table 5.2. 

Note that use of the rare disease assumption is questionable here since data from the 

population-based study reveal that (low birth weight infant|unmarried mother)= 0.119, and 

(low birth weight infant|married mother)=0.050, suggesting that OR may be substantially 

larger than RR; in fact the estimates from either Table 5.2 or Table 5.3 show that OR is 

approximately 8% greater than RR. Again, use of the rare disease assumption can be avoided 

in using Equation 5.1 under a variant of case-control sampling described in Section 5.4.2. 

As was hinted in Section 5.3, it is possible to estimate the Relative Risk or Relative Hazard 

from case-control samples without the rare disease assumption by modifying the sampling 

scheme for the controls. On the surface, the rare disease assumption appears to preclude 

situations where either the disease frequency is high or, essentially equivalently, the interval 

of risk underlying the definition of disease incidence is sufficiently long so that the 

cumulative incidence over the entire interval is high. One way to evade the issue of high 

cumulative incidence is to divide the risk interval into smaller subintervals, chosen so that 

risk levels in each subinterval meet the rare disease assumption, and then to carry out separate 

case-control studies for each subinterval  

of risk. Odds Ratios can be calculated for each subinterval, and the possibility that these vary 

over time can be incorporated into the subsequent statistical analysis. In practice, it is natural 

to implement case-control designs in this fashion when cases can only be sampled as they 

accumulate in a population. With this in mind, we describe the two most useful and widely 

used variants of the case-control scheme, the first of which uses exactly the general strategy 

we just outlined. These modified designs are called nested case-control studies because they 

can be viewed as taking a subsample from a conceptual larger cohort or population. 

5.4.1 Risk-set sampling of controls 

In a case-control design with risk-set sampling of controls, it is common to select all cases 

that occur in a population in the defined risk period [0, T], although it is perfectly acceptable 

for only a random sample to be chosen. For each incident case that is identified and sampled 

at time t, one or more controls are randomly drawn from the population of individuals still at 

risk of disease at t. Exposure measurements are taken for each case and for its corresponding 

set of sampled controls. In essence, this is a stratified, or matched, case-control design where 

the strata are defined by the times at risk over the interval [0, T]. There is no point in 

sampling controls at times where no disease occurs since they would have no comparative 

case group. This form of control sampling is widely referred to as risk set sampling or density 

sampling. Note that, unlike the traditional or classic case-control sampling of Section 5.3, it is 



possible for a control sampled at time t to later become a case and enter the sample a second 

time. Although this is unlikely in large populations unless the disease is common, such a 

participant must be included in the data set twice. Similarly, it is also theoretically possible 

that the same individual be selected as a control more than once at differing times, with the 

same admonition. 

Further, note that risk-set sampling of controls accommodates the possibility that the study 

population is dynamic in that individuals may enter and leave the population during the risk 

interval. The key to the definition of controls in this situation is that they must be at risk of 

being a case (and thus being sampled through that path) at the time of sampling. In addition, 

the possibility that an individual’s exposure level changes over time is also allowed, with the 

provision that exposure assessment applies at the time of sampling for both cases and 

controls. 

To illustrate this form of control sampling, consider a study of the role of the herpes simplex 

virus type 2 (HSV-2) on the risk for cervical cancer (Lehtinen et al., 2002). In this 

investigation, the study population consisted of 550,000 women who had donated blood 

samples to population-based serum banks in Finland, Norway, and Sweden. These samples 

were collected for a variety of reasons, including first-trimester screening samples during 

pregnancy and samples from routine health examinations and health promotion projects. 

Cases of cervical cancer from this study population were identified, over an appropriate 

calendar risk period, from cancer registries with subsequent linkage to the serum bank using 

unique identifiers. For each case found, three controls were also chosen from the serum bank 

that was cancer-free at the time of diagnosis of the case. (Controls were also matched to cases 

by age, geographic subgroups of the bank, and length of storage time for the blood sample, 

but we defer discussion of this form of matching until Chapter 16.) The donated blood 

allowed assessment of prior infection with HSV-2 via identification of antibodies. In this 

case, one possible weakness of the study is that exposure assessment refers to infection status 

at the time of the donation rather than at the time of sampling. Improving exposure 

information to avoid this complication would have involved tracing all cases and controls for 

further blood testing. 

With this variant of control sampling, we can calculate expected counts of exposed and 

unexposed participants in both case and control samples. At any time t, let NE(t) and be 

the number of individuals still at risk in the exposed and unexposed population, respectively; 

the dependence of these numbers on time allows for dynamic changes in the population. The 

number of cases expected in the exposed group at time t is then NE(t)×hE(t), by the definition 

of the hazard rate, hE(t), under exposure. Similarly, the number of cases expected in the 

unexposed group at the same time is with the same notation. On the other hand, 

if m controls are sampled at t in the manner described, then the expected number of exposed 

and unexposed controls is simply and 

respectively, since the proportion of exposed individuals at risk at time t is simply 

Table 5.5 shows these expected counts for each cell in the resulting 

2×2 table at time t. 

The Odds Ratio for this expected data table is quickly seen to be If we 

assume proportional hazards, then RH(t) does not depend on t, and so the Odds Ratios for 

each of these tables at differing times is a constant, equal to RH. In this way, a constant 

Relative Hazard can be derived from a case-control design with risk-set sampling, and can be 



estimated using methods for combining Odds Ratios across many 2×2 tables discussed later 

in the book, in particular in Chapters 9, 16, and 17. 

Why does the (sample or data) Odds Ratio from Table 5.5 not estimate the population Odds 

Ratio? The answer is that, with risk-set sampling, the exposure distribution of the sampled 

controls does not reflect the exposure distribution of as it does for the classic case-control 

sampling of Section 5.3. Happily, the distortion introduced by this form of sampling leads the 

sample Odds Ratio to estimate the Relative Hazard, arguably a more interpretable measure of 

association. 

An important variation of density sampling involves selecting all cases as for risk-set 

sampling, but sampling controls throughout the risk interval [0, T] without regard to the 

timing of the incident cases. The expected cell entries from the table that pools the cases and 

controls collected in this way are given in Table 5.6, where we have taken the liberty of using 

integral signs to reflect that we are pooling the case and control observations over time. If 

preferred, these integrals can be loosely interpreted as ―sums‖ over distinct short time periods 

that span the entire risk interval. Note that we allow for the possibility that the number of 

sampled controls, m(t), varies over the risk interval. The Odds Ratio from this table is 

complex, but can be simplified enormously if we assume that the Relative Hazard, RH(t), is 

constant over time (see Equation 4.5) and that the proportion of exposed individuals, 

also does not vary with time. In this scenario, the Odds Ratio 

from Table 5.6 is then 

where is the total number at risk at time t. Thus 

again, the sample Odds Ratio, this time from a table pooled over time, estimates the Relative 

Hazard, albeit with the crucial assumption that the population prevalence of exposure remains 

constant over time even when the population size varies. Avoiding this assumption by 

stratifying the pooled table over the time at risk (or, equivalently, time of sampling) takes us 

back to a form of risk-set sampling, albeit without a fixed number of controls per case in each 

stratum. 

Notice that we did not require any assumption about the frequency with which D occurs over 

the entire risk period (e.g., a rare disease assumption), under either form of density sampling, 

in showing that a sample Odds Ratio can be seen as an estimate of a constant Relative 

Hazard. 

5.4.2 Case-cohort studies 

Suppose nD cases are selected as with risk-set sampling, or the traditional design for that 

matter. Now, m controls are chosen at random from the entire population at risk at t=0 (of 

size N, say), the beginning of the risk period. Exposures are calculated for all sampled 

participants as usual. Here, the controls may, in fact, include a case and vice versa, so that the 

word control here means something slightly different from its usage in the traditional design; 

the sampled controls are often referred to as a sub-cohort of the original Study Population. 

The sampling scheme is known as the case-cohort design. 

The Women’s Health Trial used a case-cohort approach as part of a general investigation of 

the effects of a low fat diet on women’s health, with particular interest in the risk of breast 

cancer. In this study, women were randomly assigned to a low fat intervention or control (no 



major intervention) group. At 2-year intervals, participants filled out 4-day food frequency 

questionnaires and blood samples were drawn and stored. Evaluation of disease incidence 

involved 10 years of follow-up. Assessment of the intervention depended on the full set of 

enrolled women, but investigation of the role of actual dietary information and blood lipid 

analyses used the case-cohort approach on a subgroup of 32,000 women of ages between 45 

and 69, whose fat intake was high at entry and who possessed at least one known risk factor 

for breast cancer. In particular, all breast cancer cases were sampled, together with 10% of 

the original 32,000 as a sub cohort. The case-cohort design minimized the expense of 

abstraction of the food diaries and laboratory tests. Self et al. (1988) provide a complete 

description of the study design. 

Under case-cohort sampling, the expected total number of exposed (unexposed) controls in 

the sub-cohort is simply respectively). On the other hand, the expected 

number of exposed (unexposed) cases is Table 5.7 gives the expected 

cell entries for the entire sample. 

The data Odds Ratio for this table is so 

that with this sampling scheme and control definition, the data Odds Ratio actually estimates 

the population Relative Risk. As for risk-set sampling, we often summarize by saying that in 

a case-cohort study the data Odds Ratio estimates the Relative Risk, again with no 

assumption of disease rarity. Similarly to risk-set sampling, the (data) Odds Ratio from Table 

5.7 does not estimate the population Odds Ratio because, again, the exposure distribution of 

the sampled controls (i.e., the cohort) fails to reflect the exposure distribution of  In fact, 

it yields the total population exposure distribution as can be seen in the right-hand column of 

Table 5.7. Nevertheless, the distortion introduced by case-cohort sampling leads the sample 

Odds Ratio to estimate the population Relative Risk. If we prefer to estimate the population 

Odds Ratio, we can always ―remove‖ any cases from the cohort sample, so that then the 

right-hand column of Table 5.7 reverts to being a sample of disease-free controls, in 

which case the data now have the same structure as a traditional case-control design 

providing an Odds Ratio estimate as in Section 5.3. 

In sum, cases are sampled in identical fashions in all three case-control design strategies, but 

the subtle differences in the way ―controls‖ are sampled lead the sample Odds Ratio to 

estimate (1) the population Odds Ratio for classic case-control designs, (2) the Relative 

Hazard for risk-set sampling, and (3) the Relative Risk for case-cohort studies. This is but 

one sign that data analysis techniques and their interpretation depend in important ways on 

how the sample is selected from the Study Population.  

That is, the design matters! we will see repeatedly how the various case-control designs 

impact how we use the sample to both estimate a measure of association and the uncertainty 

surrounding such estimates. 

 

 

 

 



Conclusion 

The case-control design has traditionally been thought to suffer from increased exposure 

measurement error and selection bias through an inappropriate choice of a control population. 

However, modern case-control studies are usually designed with careful consideration of 

these potential problems. Further, the cohort study is also subject to potentially greater error 

in disease measurement since it often requires long periods of follow-up. Selection bias is 

also an issue if the exposure groups are not carefully defined. Forms of selection bias in 

either design are discussed at length in Kleinbaum et al. (1982, Chapter 11). We look at 

statistical reasons to prefer one of the three basic design strategies in the next chapter. 

Case-cohort and nested case-control designs are particularly appealing when general 

exposure information is collected in a preliminary fashion for all sampled individuals in a 

large cohort—for example, serum samples or extensive diet histories—but exact exposure 

measurement from such sources is expensive. Other forms of density sampling are discussed 

in Langholz and Goldstein (1996). The case-cohort design is well suited to studies of multiple 

outcomes since the same control sample can be used for each comparison. Wacholder (1991) 

discusses practical issues concerning the choice of a nested case-control or case-cohort 

design. Rodrigues and Kirkwood (1990) give a very readable description of the various case-

control designs, with practical suggestions for making a specific choice depending on the 

frequency and acuteness of the disease.There is substantial literature on the appropriate 

choice of controls and methods for sampling in case-control designs. See Wacholder et al. 

(1992a,b,c) for an overview of control selection. Random digit dialing (Waksberg, 1978) is 

often used for control sampling when no convenient sampling frame is available, although 

this method is becoming increasingly problematic as non-response rates for telephone 

surveys have raised substantially in recent years. Choosing controls, whether in a cohort or 

case-control study, rises again the issue of how ―representative‖ the Study Population is of 

the Target Population with regard to the validity of extrapolation of particular sample 

information to the Target Population. While ―representativeness‖ is necessary in describing 

many aspects of the Target Population, it is often not required and may not even be desirable 

if our sole intent is estimation of a measure of association. For example, in case-control 

studies, we may have access to an accurate registry of cases for a well-defined subset—

restricted, for example, by geography or the nature of the cases—that is not representative of 

all cases in the population. In this case, we are still able to implement a successful case-

control design for estimating the Odds Ratio, say, by ensuring that disease-free individuals, or 

controls, are selected at random from a Study Population that adequately serves as the source 

population only for the restricted group of cases.  
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