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a b s t r a c t

This paper provides a review of methodologies for measuring the degradation rate, RD, of photovoltaic (PV)
technologies, as reported in the literature. As presented in this paper, each method yields different results with
varying uncertainty depending on the measuring equipment, the data qualification and filtering criteria, the
performance metric and the statistical method of estimation of the trend. This imposes the risk of
overestimating or underestimating the true degradation rate and, subsequently, the effective lifetime of a
PV module/array/system and proves the need for defining a standardized methodology. Through a literature
search, four major statistical analysis methods were recognized for calculating degradation rates: (1) Linear
Regression (LR), (2) Classical Seasonal Decomposition (CSD), (3) AutoRegressive Integrated Moving Average
(ARIMA) and, (4) LOcally wEighted Scatterplot Smoothing (LOESS), with LR being the most common. These
analyses were applied on the following performance metrics: (1) electrical parameters from IV curves recorded
under outdoor or simulated indoor conditions and corrected to STC, (2) regression models such as the
Photovoltaics for Utility Scale Applications (PVUSA) and Sandia models, (3) normalized ratings such as
Performance Ratio, RP, and PMPP/GI and, (4) scaled ratings such as PMPP/Pmax, PAC/Pmax and kWh/kWp. The
degradation rate results have shown that the IV method produced the lowest RD and LR produced results with
large variation and the largest uncertainty. The ARIMA and LOESS methods, albeit less popular, produced
results with low variation and uncertainty and with good agreement between them. Most importantly, this
review showed that the RD is not only technology and site dependent, but also methodology dependent.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Photovoltaics (PV) is one of the most important renewable
energy sources, simply due to the abundant and, most-impor-
tantly, predictable solar irradiation reaching the Earth's surface.
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The technology can become even more attractive for consumers
and investors if the cost is minimized, while at the same time
keeping reliability and durability at top level. As is valid for all PV
technologies, any breakthroughs in the improvement of durability
and, subsequently, the lifetime of PV modules will instil confi-
dence in the technology, whose economic viability is based on the
capability of delivering rated power, Pmax, over the expected
service lifetime. This is the main driver behind the growing
interest in the accurate calculation and prediction of degradation
of PV under real operating conditions, either through testing in the
field or through accelerated aging.

Performance degradation is evidenced at all levels, i.e. cell,
module, array and system with different factors and degradation
mechanisms apparent at each level. In all cases, the main extrinsic
factors related to performance degradation in field operation
include: temperature, humidity, precipitation, dust, snow and
solar irradiation. At the array level, all these and additionally
shading and module mismatches contribute to degradation. The
aforementioned factors give rise to various degradation mechan-
isms [1–5] and impose significant stress over the lifetime of a PV
system, resulting in the reduction of durability, which must be
quantified through the measurement of the rate of performance
degradation.

More specifically, at the PV cell level the main mechanisms
behind performance loss and possible failure are corrosion, light-
induced degradation, contact stability and cracked cells. At the
module level, degradation occurs due to the reliability issues of the
individual cells and in addition due to glass breakage, delamina-
tion, busbar failure, broken interconnects, front surface discolora-
tion, moisture ingress, reduced interlayer adhesion, diode failures
and hot-spots. The majority of studies on the crystalline Silicon
(c-Si) technology report that the calculated Pmax degradation was
mainly attributed to short circuit current, ISC, losses, followed by
smaller decreases in the fill factor, FF [6–9]. ISC degradation
associated with the reduction of Pmax was most commonly caused
by delamination and discoloration [10,11]. Hishikawa et al. [9]
showed that the reduction in ISC was due to discoloration or
delamination at the cell/ethylene-vinyl acetate (EVA) interface,
front glass breakage and increased series resistance, RS, due to the
degradation in electrode soldering. A study by the National
Renewable Energy Laboratory (NREL) suggested that the degrada-
tion rate and associated ISC decline were caused by ultraviolet (UV)
light absorption at or near the top of the silicon surface, which
causes discoloration [12]. Sanchez-Friera et al. [7] attributed the
large degradation rate and ISC losses to delamination of the cell-
encapsulant interface, oxidation of the front metallization grid and
the antireflection coating of the cells and front glass soiling. On the
other hand, for thin-film technologies, there was a higher degra-
dation rate of the FF in comparison to the c-Si case [13]. Finally, at
the system level, degradation was the result of individual module
failures, array shading, potential induced degradation (PID) [14]
and other balance-of-system effects such as inverter efficiency
loss, interconnect and cabling losses.

Gradual degradation of the performance when exposed to field
conditions is defined as the inability of the PV device to produce
its rated power, following exposure to extrinsic factors [15]. Long-
term testing of PV has proven that gradual degradation affects the
rated power of PV and although it can be clearly observed through
long-term monitoring of PV devices in the field, accurate physical,
mathematical or empirical representations do not yet exist due to
the multitude of physical factors and mechanisms associated with
degradation. In other sectors, such as the automotive, materials,
paint and coating industries, long-term degradation is tested
through weathering. In this regard, weathering is very different
from the existing International Electrotechnical Commission (IEC)
qualification testing standards on PV modules that test for “infant

mortality” [16,17] and needs to be established for PV as well. Even
if a PV module passes qualification testing, it does not prove that it
will offer its theoretical useful lifetime in every operating envir-
onment. Some advancements have been made in the form of
proposals such as the American Society's for Testing and Materials
(ASTM) proposal, ASTM WK25362, “New Practice for Accelerated
Life Testing of Photovoltaic Modules” [18], which describes proce-
dures for accelerating the failure mechanisms of PV modules
caused by mechanical, electrical, and environmental stresses.
ASTM states that the results of test protocols described in ASTM
WK25362 will help designers and manufacturers identify and
quantify the failure mechanisms that can limit the service life of
PV modules, as well as provide methods to evaluate the rate of
performance degradation. Other proposals have been made by the
IEA PVPS Task 13 team on the “Performance and Reliability of
Photovoltaic Systems” [19,20] in order to build a data bank of PV
system measurements and analyze the data to assess their
performance and degradation.

The objective of this paper is to review the current state of
degradation rate evaluation methodologies, providing details of
each reported method, their advantages, disadvantages and uncer-
tainties and to report the degradation rates resulting from each
method. The reviewed methodologies were classified based on the
testing conditions (field exposure or artificial conditions) and
compared based on measurement data qualification and filtering
criteria, performance ratings and statistical analyses required to
reduce uncertainty and variability of the results. A direct compar-
ison between the methodologies was made based on the esti-
mated uncertainty of the results.

2. Degradation of terrestrial photovoltaics

The extent by which the various degradation mechanisms
affect the different PV technologies does not appear to be identical
but depends on the technology, the operating topologies and the
cumulative history of exposure to meteorological conditions as a
result of the geographical location of the installation. Conse-
quently, the rated power of PV degrades at different rates. The
term degradation rate, RD, is defined as the rate of maximum
performance reduction over time and is denoted as a positive
quantity. It is commonly expressed in %/year and represents the
reduction of Pmax expected from a PV cell, module, array or system
in the field [21]. Measures of degradation rates are essential in
assessing the effective lifetime of a PV module, given the 25-year
long warranties offered by manufacturers, which guarantee a
maximum of 20% reduction of the datasheet Pmax at the end of
the 25 years. As of lately, the maximum degradation rate per year
is also warranted. Some manufacturers guarantee that the PV
module will not experience performance degradation higher that
1%/year for the first ten years of operation (linear warranty), but
they do not specify the tests necessary for assessing a potential
claim by the customer. Even by measuring the module's perfor-
mance at Standard Test Conditions (STC), the measurement
uncertainties are high enough that a difference lower than 3–4%
from the rated Pmax cannot be held in certainty. The warranties by
themselves are high enough and the fact that recently produced
modules have not been tested to the end of their lifetime in the
field further validates the need for establishing a standardized
methodology for calculating accurate degradation rates of PV
modules and systems in the field.

Jordan et al. have compiled a comprehensive review of pub-
lished degradation rates [22]. In summary, from 1751 published
studies for c-Si, the average degradation rate was calculated at
0.7%/year and the median at 0.5%/year, with the majority of studies
published before 2000, whereas for 169 published studies for
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thin-film technologies the average and median were higher, at
1.5%/year and 1%/year respectively, with the majority of studies
published after 2000. These results did not include initial degra-
dation (minimum three years of measurement data). Although the
average for thin-films was 1.5%/year, the rates were spread from
0.2 to 4.2%/year, whereas for c-Si the rates were mainly concen-
trated around the median. This signifies a very large variation in
reported degradation rates, which may be attributed to the small
number of field studies and the variability in degradation rate
calculation methodologies [23,24]. Interestingly, the study found
degradation rates for systems which were sometimes lower than
the rates reported for modules and not the other way around as
one might expect, given that balance-of-system components, dust
and snow accumulation and shading could result in higher
degradation rates [25–28].

Methods for calculating RD vary widely with the performance
metric used to rate the power of the PV module/array/system and
also the test conditions (outdoors and indoors). Indoor testing at
STC (1000 W/m2 irradiance, AM1.5 spectrum and 25 1C cell tem-
perature) using solar simulators is less often used as it is time
consuming and inefficient for large PV systems. Often, only a small
sample of PV modules is tested at STC [16,17] in order to calculate
the degradation of a large PV system, hence adding significant
error to the calculation.

The methodologies presented in this paper are classified into
field based, by monitoring the long-term performance of PV in the
field and indoor based, by applying stress under accelerated
conditions.

2.1. Calculation of degradation rates of PV systems and modules
in the field

2.1.1. PV performance metrics
The calculation of degradation rates relies on the analysis of

chronological ratings of the performance of PV devices. Evaluation
of the performance of PV in the field typically includes the
recording of measurements such as: (1) direct current (dc) current
and voltage at the maximum power point (MPP) of the module or
array, IMPP and VMPP and subsequently the dc power, PMPP, as a
calculated quantity, (2) alternating current (ac) power, PAC, of grid-
connected systems, (3) short-circuit current, ISC, open-circuit
voltage, VOC, fill factor, FF, series resistance, RS, and shunt resis-
tance, RSH, from IV characterization of modules and arrays and,
(4) meteorological measurements such as the plane of array global
irradiance, GI, module, Tm, and ambient, Tam, temperatures, wind
speed, Sw, and wind direction, aw, and relative humidity, Hrel [29].

Common performance metrics used to rate the performance
the PV technologies can be grouped into four categories, (1) elec-
trical parameters from IV curves recorded under outdoor or
simulated indoor conditions and corrected to STC, (2) regression
models such as the Photovoltaics for Utility Scale Applications
(PVUSA) and Sandia models [30,31], (3) normalized ratings such as
Performance Ratio, RP, and PMPP/GI and, (4) scaled ratings such as
PMPP/Pmax, PAC/Pmax and kWh/kWp [32].

2.1.1.1. IV characterization. Outdoor IV curves are usually obtained
periodically, whereas indoor IV curves are obtained under STC at
variable intervals [33]. From an IV curve, degradation can be
observed on the individual electrical parameters [34]. As detailed
in the previous section, degradation of an electrical parameter can
be correlated to the existence of certain physical defects. Further
validation of the existence of these physical defects can also be
performed indoors, with techniques such as electroluminescence
and dark lock-in thermography. Outdoors IV characterization is
currently performed purely for research purposes, with the

modules ideally held at MPP between IV scans, in order to
simulate the full load condition [6]. Indoor IV characterization is
less commonly used as it is time consuming and inefficient for PV
systems. Furthermore, regular indoor IV characterization carries
the risk of module failure due to mishandling, while being
transported to a testing facility or while being handled in the
lab. Thus, it is more efficiently used for single field-exposed
modules, deployed alongside a larger PV system [35]. When
using indoor IV characterization, the degradation rate can be
calculated by the percentage error (PE) between two consecutive
temporal ratings [36].

2.1.1.2. Regression modeling. Regression models are empirical
models that stem from the linear relationship of PV system
parameters with meteorological parameters [37]. One of the
most popular regression models is the PVUSA model [38]. The
model requires the selection of measurements at high irradiance
on the plane of the array (at, or above 800 W/m2), fitting these
measurements of PMPP or PAC, GI, Tam and uW to Eq. (1) and
calculating the coefficients a, b, c and d via multivariate
regression. More commonly, multiple linear regression is used,
although more robust methods could be used to minimize the
error of the regression residuals. The coefficients are calculated for
monthly blocks of data and then monthly ratings at PVUSA Test
Conditions (PTC), PPTC, are calculated by substituting GI¼1000W/m2,
Tam¼20 1C and uW¼1 m/s in Eq. (1).

PMPP ¼ GIðaþbGIþcTamþduW Þ ð1Þ

The model is accurate for c-Si PV, but not for thin-film
technologies. A modified model for thin-films was proposed in [39],
which uses Eq. (2) and adds a constant loss factor, where a, b, c, d
and e are regression coefficients with measurements at irradiance
levels equal or greater than 50W/m2. An indirect advantage of this
modified model is that less data is filtered out, resulting in more
accurate realization of the temporal characteristics of the PV system
under a larger operating range of irradiance.

YA ¼ GIðaþbGIþcTamþduW Þ�e ð2Þ

2.1.1.3. Normalized and scaled ratings. Normalized [40] and scaled
[32,41,42] ratings are used for direct comparisons between
different PV technologies, PV system capacities and geographical
locations [43]. The most popular metric is RP, which is defined in
Eq. (3) as the ratio of the final energy yield of the PV system, Yf,
and the reference yield, Yr [29]:

RP ¼
Yf

Yr
ð3Þ

where Yf is defined as the yield of the PV system, when PAC is used
and of the array if PMPP is used, divided by the rated power, Pmax, of
the PV array and Yr is calculated by dividing the total irradiation on
the plane of the array, HI, by the reference irradiance at STC
(1000 W/m2). The main advantage of RP and the other normalized
and scaled metrics over the PVUSA method is that they can be
expressed in yearly, monthly, weekly and any other arbitrary
time unit.

With respect to degradation rates, a comparison of the pub-
lished rates obtained using PVUSA and RP, showed similar results
for different technologies [44], but some studies have shown
substantial differences between the PVUSA and RP [40,45]. Differ-
ent results have also been observed by using temperature correc-
tion and different averaged time units on the RP. It has been shown
that the application of temperature correction results in higher
degradation rates, in comparison to non-temperature-corrected
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measurements [40,46], with the higher degradation rates in line
with degradation rates obtained from indoor IV characterization.
Also, the usage of a smaller time unit resulted in the increase of
the variability of the resulting degradation rates [40].

2.1.2. Measurement qualification and filtering
The measurements of the meteorological parameters and the

electrical parameters of PV systems in the field are very sensitive
to the type of sensors used, their accuracy and calibration and also
the presence of soiling and sporadic errors and faults. The
measurements are usually filtered to select favorable meteorolo-
gical conditions [47] and averaged to remove bad measurements
and noise. Studies have shown that data filtering improved the
calculated power rating of PV at PVUSA Test Conditions (PTC) and
reduced uncertainties [30] by removing invalid and out-of-
calibration measurements, outages and shading periods from the
evaluation. The lowest uncertainties were evaluated when select-
ing clear days, above 400 W/m2 irradiance from a reference cell in
comparison to a pyranometer, and using the Behnke, Erdman &
Whitaker Engineering (BEW) linear method [48] in the summer
and the PVUSA method in the winter, for all technologies. For
specific technologies, the King 3-Part model showed the lowest
uncertainties except for multi-c-Si which was on par with PVUSA.
Outliers, especially due to shading, in the measurement data were
discussed in [49] and it was shown that they can be identified
using the ISC and the GI as a method to reduce uncertainty in RD
calculations. Another study reported the analysis of the perfor-
mance of PV arrays using imperfect or incomplete input data [50].
The study proposed interpolation of missing meteorological data
from the calculation of the nominal operating cell temperature
(NOCT) using available data and identifying bad PV measurement
data by normalization and visual representation through contour
plots. Correcting outliers in the measurement data adds complex-
ity to the methodology and is time-consuming, but it has the
advantage that the uncertainty of calculated RD is reduced sig-
nificantly. This is of particular importance for short testing periods,
where there are larger uncertainties due to the small amount of
measurement data. On the other hand, overcorrection of PV
measurements can lead to unrealistic expectations by introducing
bias to the calculations [51]. Also, filtering out a significant amount
of measurements or selecting a very small subset of measurements
reduces the sample size and the statistical significance of the
results [52]. A more recent study discussed how data filtering
affected the calculated degradation rate of a grid-connected PV
system at NREL in the US [40]. The study used the degradation rate
calculated by measuring the Pmax indoor at STC, before field
deployment and after six years of exposure, as its basis. It was
found that the temperature corrected PMPP/GI and RP metrics,
combined with a stability (i.e. irradiance and temperature rate of
change) filter and outlier filter resulted in degradation rates in line
with the indoor measured degradation rate at STC. The non-
temperature-corrected RP showed negative bias on the resulting
degradation rate. Using the PVUSA rating the resulting degrada-
tion rates were far away from the indoor degradation rate,
whether filtering was applied or not.

2.1.3. Statistical analysis
Statistical methods for estimating the trend of the performance

metric over time have the largest impact on the resulting RD. The goal
of the statistical analysis is to calculate the trend of the PV
performance time series and translate the slope of the trend to the
annual degradation rate, in units of %/year. Model-based methods
such as Linear Regression (LR), Classical Seasonal Decomposition
(CSD), Holt–Winters (HW) exponential smoothing and AutoRegres-
sive Integrated Moving Average (ARIMA) require the specification of

a stochastic time series model whereas non-parametric filtering
methods, such as LOcally wEighted Scatterplot Smoothing (LOESS)
do not require specification of a model and are popular because of
their simplicity.

The most commonly used method in the literature is linear
regression (LR). LR is used to fit Eq. (4) to the PV performance time
series

ŷ¼ αtþβ ð4Þ

where ŷ represents the fitted values, α is the slope of the trend and
β is the y-intercept. The LR algorithm tries to fit Eq. (4) by
minimizing the sum of squared residuals, by most commonly
using ordinary least squares. It is very sensitive to outliers and
seasonal variations and can thus have a very large uncertainty.
An alternative to ordinary least squares is the Theil–Sen estimator
[53,54] which is a robust estimation technique that chooses the
median slope among all lines passing through the data points. Its
main advantage is that it is much less sensitive to outliers.

The following methods more advanced than LR have been
proposed in the literature [46,55–57], in order to extract the
underlying trend from the PV performance time series and over-
come the limitations of the LR method:

� The CSD method is based on the application of a centered
moving average and computation of seasonal indices by aver-
aging the extracted seasonal component for each month.
It therefore assumes that the seasonal component of PV
performance is stable year after year. It requires either the
additive model in Eq. (5) or the multiplicative model in
equation depending on the stability of the seasonal component.

ŷ¼ TtþStþet ð5Þ

ŷ¼ TtStet ð6Þ
where Tt is the trend, St is the seasonal and et is the residual
component. Due to the fact that the LR and CSD methods fit a
fixed model, particular characteristics of each time series are
therefore not captured and this results in significant autocor-
relations in the model residuals.

� Another model-based method is HW, in which triple exponen-
tial smoothing is applied to the time series. Triple exponential
smoothing takes into account seasonal changes, as well as
trends, through the minimization of the squared one-step
ahead prediction error, in contrast to CSD, which bases the
calculation of trend, seasonal component and residuals on a
centered moving average. HW exponential smoothing requires
the general additive model in Eq. (7), where mn is the level
component, bn is the slope component and cn-Sþ l is the relevant
seasonal component, S is the seasonal period, and are given in
Eq. (8), Eq. (9) and Eq. (10) respectively.

ŷnþ l nj ¼mnþbnþcn�Sþ l l¼ 1;2; ::: ð7Þ

mt ¼ α0ðyt�ct� SÞþð1�α0Þðmt� lþbt� lÞ ð8Þ

bt ¼ α1ðmt�mt� lÞþð1�α1Þbt� l ð9Þ

ct ¼ α2
yt
mt

þð1�α2Þct�S ð10Þ

where α0, α1 and α2 lie between 0 and 1.
� The most advanced model-based method reported in the

literature is multiplicative ARIMA [58,59]. The ARIMA method
is more flexible than classical methods since it can effectively
deal with seasonal variations, random errors, outliers and level
shifts and can therefore be used to specify a model which
removes all autocorrelations in the model residuals. The gen-
eral model for multiplicative ARIMA is given in Eq. (11) and is
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abbreviated as ARIMA(p,d,q)(P,D,Q), where p is the auto-
regressive (AR) order, d is the differencing order, q is the
moving average (MA) order, P is the seasonal AR order, D is
the seasonal differencing order and Q is the seasonal MA order.

ΦðTÞΦSðTSÞ∇d∇D
S yt ¼ θðTÞθSðTSÞet ð11Þ

In order to find the optimal ARIMA model, the time series must
be checked for stationarity and then transformed using differ-
encing to achieve stationarity, as necessary. The lags p, q, P, Q of
the model are determined from the autocorrelation function
(ACF) and the partial autocorrelation function (PACF). The
model selection procedure can yield multiple models that fit
the data well. The optimum model is the one with the lowest
order (i.e. parsimonious), with the lowest mean-square-error
(MSE) and the minimum value of the corrected Akaike infor-
mation criterion (AICc). Due to the complex nature of ARIMA, it
is entirely implemented in software [60,61]. One of the most
widely used software packages is X-13 ARIMA [62], which was
developed by the U.S. Census Bureau. X-13 ARIMA implements
the parametric X-11 ARIMA method [63,64] which automati-
cally detects additive outliers and level shifts in the data and
has been proven to calculate statistically accurate degradation
rates [55]. The ARIMA method was investigated for forecasting

the RP of different PV technologies [65]. Through model
validation, residual analysis and minimization of the forecast-
ing error, the study showed that each PV system was modeled
more accurately with different model orders. Another study
tested the sensitivity of the methodologies to outliers and data
shifts [56]. Shifts in the measurements were fixed by selecting a
range of corrective scaling factors and minimizing the residual-
sum-of-squares (RSS) of errors with respect to the various scale
factors. The ARIMA(1,0,0)(0,1,1) model was pre-selected and the
results showed that it performed very well with outliers and
could be used to calculate similar RD to the simple LR method
with as little as two years of field measurements in a semi-arid
climate.

� Non-parametric filtering methods are different than model-
based methods because an explicit model is not specified. One
such method is LOESS, which extracts the trend from locally
weighted polynomial fitting [66,67]. LOESS provides robust
estimates of the trend and seasonal components that are not
distorted by outliers and missing values [68]. A comparison
of RD found using LR, CSD and LOcally wEighted Scatterplot
Smoothing (LOESS) on monthly and daily RP and temperature-
corrected RP (RP�TC) time series of 5 years of c-Si and thin-film
PV system performance has shown that LR was the least robust
method since it was heavily influenced by the type of

Table 1
Published RD calculation methods, emanating from field exposure.

Performance rating Measurement data filtering
criteria

Statistical analysis References

Monthly W/Wp, from STC corrected dc PMPP PMPP at AM1.5 and noon PEa of 1st year between sequential Junes [45]
Monthly dc RP – LR on time series [45]
Monthly dc RP PMPP at GI4800 W/m2,

excluding outages
LR on time series [45]

Monthly PVUSA ratings, from dc PMPP – LR on time series [45]
Monthly PVUSA ratings, from module IV PMPP PMPP at GI4800 W/m2 LR on time series [24,56]
Monthly PVUSA ratings PMPP at GI4800 W/m2 CSD (additive) on time series and LR on the extracted

trend
[56]

Monthly PVUSA ratings PMPP at GI4800 W/m2 ARIMA(1,0,0)(0,1,1) modeling of the time series, CSD on
modeled data and LR on the extracted trend

[56]

Monthly dc RP Correction of outages Optimal seasonal ARIMA and LR on the trend
component

[55]

Monthly dc RP Correction of outages HW exponential smoothing [55]
PMPP, from outdoor module IV and indoor IV at STC – PEa of PMPP [36]
PMPP, from outdoor module IV PMPP at Tm¼NOCT and

GI4800 W/m2
PEa of PMPP [6]

Annual ac RP – PEa of RP [74,75]
PMPP, from indoor IV at STC – PEa of PMPP [76–78]
Daily dc RP – LOESSb regression on time series and LR on separate

degradation regions
[35]

Monthly and daily dc RP – LR on time series [46]
Monthly and daily dc RP – CSD (additive) on time series [46]
Monthly and daily dc RP – LOESS on time series [46]
Monthly and daily dc RP-TCc – LR on time series [46]
Monthly and daily dc RP-TCc – CSD (additive) on time series [46]
Monthly and daily dc RP-TCc – LOESS on time series [46]
Weekly means of PMPP, ISC, VOC, FF, IMPP and VMPP, from outdoor

module IV and correction to 1000 W/m2 and Tm¼45 1C
PMPP, ISC, VOC, FF, IMPP and VMPP

at 800oGIo1100 W/m2
LR on time series [79]

Daily ac kWh – PV system ac yield normalized by relative final
ac yield and LR on time series

[21]

Modified monthly PVUSA ratings, from PAC corrected to STC PAC at GI4500 W/m2 LR on time series, RD ¼ x1τregress
x2

100 where P¼x1tþx2
is the linear fit equation.

[80]

Modified weekly PVUSA ratings, from PAC corrected to STC PAC at GI4500 W/m2 LR on time series, RD ¼ x1τregress
x2

100 where P¼x1tþx2
is the linear fit equation.

[80]

Modified monthly PVUSA ratings, from PAC corrected to STC PAC at GI4500 W/m2 CSD on time series, RD ¼ x1τregress
x2

100 where P¼x1tþx2
is the linear fit equation.

[80]

Modified weekly PVUSA ratings, from PAC corrected to STC PAC at GI4500 W/m2 CSD on time series, RD ¼ x1τregress
x2

100 where P¼x1tþx2
is the linear fit equation.

[80]

a PE: percentage error
b LOESS: LOcally wEighted Scatterplot Smoothing
c RP-TC: performance ratio using temperature corrected PMPP.
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performance metric used and by temperature correction of
PMPP. Using as a criterion the lowest variation of RD, the best
method for c-Si was the monthly RP-LOESS which resulted in an
average degradation rate of 0.95%/year, while for thin-films it
was the daily RP-LR method, which resulted in an average
degradation rate of 2%/year [46].

From these results, it can be deduced that different technolo-
gies might require different RD calculation methods because of the
inherent differences in their seasonal components, temperature

coefficients and metastability (Staebler–Wronski effect, thermal
annealing, light soaking and dark rest).

2.1.4. Uncertainties
Each methodology for calculating the degradation rate of PV

systems in the field carries different uncertainties. For example,
the LR method on RP carries the uncertainty of the regression and
the calculation of RP, which in turn carries the uncertainties of the
VMPP, IMPP, PAC, GI, Tam and Tm sensors used. Correction of outages
and filtering measurements in order to exclude low-quality data
reduce the degradation rate uncertainty due to the sensing
equipment, shading (snow, dust) and outages [40,55,69].

On the other hand, the short observation time, the presence of
outliers in the measurements and the data shifts related with
hardware changes, increase the uncertainty of the calculation [56].
A minimum testing period of 3–5 years was found to be necessary
in order to obtain accurate RD from field measurements, due to
seasonal variations and higher initial degradation [70]. More
specifically, the uncertainty of the statistical method used to
calculate the RD is reduced with increasing observation time, as
more sample data is recorded and therefore random variations and
seasonality have a smaller impact on the underlying trend.
In addition, the methodology used can affect uncertainty and
therefore the width and shape of the RD distribution. A larger
uncertainty is related to larger variance and thus results in a
broader distribution. Granata et al. [71] found that the calculated
RD were within the experimental uncertainty, which means that
they were statistically insignificant, given the specific measuring
equipment and calculation method. The experimental uncertainty
can be quite high, as the irradiance measurement carries the
largest contribution to uncertainty. Translated into RP, the uncer-
tainty can reach up to 4.5% [72]. This further proves the need for
employing a methodology which minimizes the uncertainty,
especially given that a linear RD less than 0.5%/year is required to
satisfy long-term warranties [73].
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Fig. 1. Distribution of degradation rates of all technologies and all methods, from
the sources cited in this paper. The blue vertical line represents the median and the
cyan vertical line represents the mean RD. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Worldwide rates of degradation [%/year] from the results of the studies listed in Table 1. The color and size of the bubbles represent the degradation rate value.
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Trend extraction techniques reduce the degradation rate uncer-
tainty by removing noise and seasonal effects from the time series.
The more complex the trend extraction technique, the better is the
removal of the seasonal and noise components. CSD, being a fixed
technique, suffers from these pitfalls. It assumes that the seasonal
component is stable each year and makes no corrections to the
model based on the residuals. This is not valid for a-Si technologies
as they experience periods of lower efficiency due to the Staebler–
Wronski effect and then periods of increased efficiency due to
thermal annealing. It is also not valid for meteorology, as the
annual global irradiation reaching the Earth's surface varies
according to the well-known 11-year solar cycle and other random
fluctuations.

2.1.5. Degradation rate analysis for PV systems in the field
Table 1 summarizes the commonly employed analytical RD

calculation methods used for PV systems and modules installed
outdoors, as reported in the bibliography. From this table it is clear
that there is a multitude of methods used to calculate the RD of PV.
It is thus evident that a comprehensive study must be performed
where each and every method is tested on the same PV modules/
arrays/systems and compared in multiple locations, in order to
formulate an accurate and robust methodology.

The RD results from all the sources cited in this paper are shown
in the histogram of Fig. 1, where a positive RD indicates loss of
performance. The mean RD of all technologies was found to be
1.1%/year and is indicated by the cyan dashed line. The median RD
of all technologies was 0.99%/year (indicated by the blue dashed
line). For individual technologies, the mean RD for mono-c-Si was
0.89%/year, for multi-c-Si was 0.81%/year, for a-Si was 1.34%/year,
for CIGS was 1.86%/year, for CdTe was 1.70%/year and for other
thin-film technologies the mean RD was found to be 2.24%/year.
From the differences in the mean degradation rates, it is evident
that a distinction must be made, based on the PV technology.

The same degradation rates are shown on the map of Fig. 2.
From the map it can be seen that the highest degradation rates
were found in Korea and the Mediterranean region and the lowest
in Brazil and Italy. The geographical representation should not be
taken as relative, but rather as absolute values, as the degradation
rates were calculated from a multitude of systems with vastly
different field exposure history and using much different degrada-
tion rate calculation methods.

The RD results extracted from the investigations listed in Table 1
were further categorized by technology and statistical analysis
method and presented in Fig. 3, where the black dashed horizontal
line represents the median RD of all technologies. It can be seen that

for all technologies, the IV method with PE resulted in the lowest
degradation rates and low variation, except for mono-c-Si. LR
resulted in the largest variations and uncertainties, especially for
a-Si/a-Si, CdTe and CIGS, and produced slightly lower median RD.
LOESS and ARIMA, albeit less frequently used, were shown to
produce good results with low variation, for all technologies. Lastly,
CSD produced the highest degradation rates for mono-c-Si and
multi-c-Si.

2.2. Degradation rates of PV modules through accelerated aging

2.2.1. Weathering
As mentioned in the previous section, degradation studies in

the field need several years of field exposure in order to yield
credible results but they still carry large variability, as shown by
the published RD results, even for the same technologies and
manufacturers. Keeping in mind the continuous improvement of
PV cells and modules and the introduction of new module
revisions to the market, long-term testing of every PV module
revision is impractical and unrealistic. For this reason, their
reliability is estimated through accelerated aging and statistical
sampling, from tried and tested techniques developed for the
materials industry. In this regard, qualification test procedures
were created specifically for PV modules [16,17] resulting in pass/
fail criteria. Although these procedures formulate the standard
conditions for qualification of all PV modules, it is impossible to
simulate all degradation mechanisms that occur naturally in the
field and are thus unable to test module reliability and durability.
On the other hand, degradation mechanisms that do not normally
appear in the field can manifest due to unrealistic stress levels.
As mentioned before, future standards will recommend proce-
dures for quantifying the durability and of PV modules through
weathering [18].

Regarding accelerated indoor testing, studies have shown that
1000 h at damp-heat conditions at 85 1C and 85% Hrel were able to
simulate a Pmax drop of about 10% [81,82] due to moisture ingress
which causes corrosion and delamination. Therefore, if a mean,
linear degradation rate of 0.8% is assumed for c-Si [22], this is
equivalent to 12.5 years of outdoor exposure. The advantage of this
method is that it reveals degradation of Pmax due to corrosion and
delamination in a short amount of time but due to the unknown
acceleration factor, AF, degradation cannot be correlated to normal
operation in the field, as different climates have varying effects on
the field exposure history [34]. Furthermore, a high AF means that
the PV module will be exposed to a much harsher environment
than what will normally be encountered in the field. In this case,
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the correlation between accelerated aging and field aging becomes
even weaker, because of degradation mechanisms unique to the
extreme environment. More recently, the effect of thermal cycling
was studied by predicting the RD under accelerated stress [83]. The
results showed that degradation was observed on the solder
interconnections and in comparison to normal operation, the
acceleration factor was found to be equal to 6, for temperature
cycles between �40 1C and 85 1C.

2.2.2. Potential induced degradation
An important externally induced factor that causes excessive

degradation in PV modules is the potential induced degradation
(PID), which was discovered in the last few years by the PV
community. PID is accelerated under hot and humid condit-
ions [84] and is a critical factor leading to significant loss of power
in PV. Due to its relatively recent discovery, there is lack of data on
this degradation mechanism of PV modules deployed in the field.
Only recently, the first attempt towards calculation of the RD of PV
modules under high system voltage operation in the field was
presented in a publication by Kaul et al. [85]. The 2.5 year outdoor
monitoring of glass-to-glass Cu–In–Ga–Se (CIGS) thin-film mod-
ules in the hot and humid climate of Florida, revealed a significant
RD of 5.1371.53%/year and 4.571.46%/year using PVUSA type
regression analysis for the positive and negative strings, respec-
tively. Table 2 summarizes some of the studies on loss of power
during outdoor and indoor PID testing. Most companies perform
indoor PID tests using criteria that they have set themselves.
Therefore, there is a great need for an international experimental
procedure to be included in qualification tests to allow the
comparison of test results. An independent IEC standard for PID
of c-Si modules (IEC 62804) is under discussion by the PID
committee for standardization and is expected to be finalized in
2014–2015 [86]. A brief description of the first draft of the IEC
62804 is: 96 h under specified system voltage, 58–62 1C and
80–90% humidity, for c-Si modules with their frame grounded
[87]. The test samples must then pass the insulation test and the
test for insulation resistance when wet, as well as the power test,
per IEC 61215, and a visual inspection, per IEC 61730.

3. Conclusions

The accurate and efficient evaluation of performance degrada-
tion of PV technologies is the next logical step to reaping the
benefits of PV, as new, more efficient technologies emerge with
unstudied and undefined durability and weatherability. Under-
standing of the performance degradation under real operating
conditions is a key requirement for their successful characteriza-
tion under varying meteorological conditions. The outcome of PV

degradation assessments and the comparison of different PV
technologies provide useful insight on the durability of each
technology and their efficiency throughout their lifetime. In this
paper it has been shown, from a number of published studies, that
researchers are creating momentum with the degradation of PV
and subsequently, their long-term durability.

Through the analysis of published works, this review has
shown that the degradation rate is not only technology dependent,
but also methodology dependent. Many different methodologies
for calculating degradation of different technologies were pre-
sented as well as their results in the form of degradation rates.
In the case of degradation rates and long-term durability, the
recognized research directions are pointing towards the standar-
dization of methods for degradation rate assessment including
experimental uncertainty limits, measurement data qualification
and filtering, averaging, outlier detection and performance rating
techniques required in order to reduce uncertainty and variability
and to establish the standardized reporting of degradation rates
for different technologies.

Finally, this review paper identified and presented the four
major statistical analysis methods for the calculation of degrada-
tion rates: (1) Linear Regression (LR), (2) Classical Seasonal
Decomposition (CSD), (3) AutoRegressive Integrated Moving Aver-
age (ARIMA) and, (4) LOcally wEighted Scatterplot Smoothing
(LOESS) and the different performance metrics used in conjunc-
tion with these methods: (1) electrical parameters from IV curves
recorded under outdoor or simulated indoor conditions and
corrected to STC, (2) regression models such as the Photovoltaics
for Utility Scale Applications (PVUSA) and Sandia models, (3) nor-
malized ratings such as Performance Ratio, RP, and PMPP/GI and,
(4) scaled ratings such as PMPP/Pmax, PAC/Pmax and kWh/kWp.
A statistical analysis of the results of the methodologies has shown
that the IV method with PE produced the lowest RD. The LR
method produced results with considerable variations and uncer-
tainty. The CSD method produced the highest RD for mono-c-Si
and multi-c-Si but with lower uncertainty than LR, whereas the
ARIMA and LOESS methods, albeit less popular, produced results
with low variation and uncertainty and with good agreement
between them for all technologies.
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Table 2
Published studies on power loss during indoor and outdoor PID testing.

Indoor PID testing Outdoor PID testing

Between �10 and �99% change in power for 9 c-Si modules out of 13,
after 48 hours.

�35% change in power for a back-contact c-Si PV module experiencing þ160 V at the
high potential end of a series string, after several months, in Germany [88].

PID module test configuration: front aluminum foil, �1000 V between the foil
and the front contact of a PV cell, modules placed in a climatic chamber
at 50 1C and 50% humidity [87].

�52.2% power loss for framed a-Si modules after 1340 h. �11% change in power for c-Si modules under �600 V system voltage bias (applied
logarithmically with irradiance), after �10 months, in Florida, USA [90].PID module test configuration: �600 V applied to the shorted output leads of

the module, modules placed in environmental chamber at 60 1C and 85%
humidity [89].

�25.7% power loss for c-Si modules under �1500 V system voltage bias, after one
year, in Florida, USA [91].
Power degradation of up to �51% for multi-c-Si solar modules biased to �1000 V
at daytime, within 25.5 weeks, in Alzenau, Germany [92].
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