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Abstract

A frequency domain spectral analysis is presented for the seismic analysis of cable-stayed bridges for the multi-component stationary
random ground motion incident at an angle with the longitudinal axis of the bridge. The ground motion is represented by its power
spectral density function and a spatial correlation function. The analysis duly takes into account the spatial variation of ground
motions between the supports, the modal correlation between different modes of vibration and the quasi-static excitation. Using
the proposed method of analysis, an extensive parametric study is conducted to investigate the behaviour of the cable-stayed bridge
under the seismic excitation. The parameters include the spatial correlation of ground motion, the angle of incidence of the earth-
quake, the ratio between the three components of the earthquake, the number and nature of modes considered in the analysis, the
inertia ratio between the tower and the deck, and the nature of the power spectral density function of the ground motion.
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The open competitive design situation that existed in
Germany after the second world war has indicated that
cable-stayed bridges are an economical solution for
moderately long span bridges. The distribution of sup-
ported cables along the span deck as well as the axial
compression which is produced by these cables make the
dynamic behaviour of these kinds of bridges different
from those of suspension bridges. In the literature, the
reported work on the subject include both linear and non-
linear dynamic analysis based upon either finite element
or lumped mass modelling. Although the non-linear
analysis represents a more realistic dynamic behaviour
of the bridge, a linear analysis is found to be economical
and justified in many of the cases without losing the
accuracy to a great extent.

The previous work on the dynamic behaviour of
cable-stayed bridges considered either a free vibration
problem [1,2] or a forced vibration problem due to seis-
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mic excitations [3–7] and/or vehicular movement [8].
Kajita and Cheung [9] used the finite element method to
find the natural frequencies and mode shapes of the ver-
tical (transverse) and torsional vibration of a two-plane
cable-stayed bridge, with the deck assumed to be a uni-
form thick plate. Morris [10] utilized the lumped mass
approach for the linear and non-linear dynamic
responses of the cable-stayed bridges due to sinusoidal
load applied at a node. From the analysis of two different
types of cable-stayed bridges, he concluded that a linear
dynamic analysis could suitably describe their structural
behaviour. Fleming and Egeseli [3] also assumed a
lumped mass model of cable-stayed bridges for finding
the responses due to three different types of loading
namely vertical and horizontal earthquake excitations,
wind induced force and a single constant moving force.
Their conclusion was that the structure could be assumed
to behave as a linear system during the application of
dynamic loads, starting from the deformed state under
dead loads; although there might be significant non-lin-
ear behaviour during the static application of the dead
loads. Nazmy and Abdel Ghaffar [5,6] investigated the
non-linear earthquake response of cable-stayed bridges
by lumped mass idealization of the bridge and showed
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that upto moderately long span bridges, a linear dynamic
analysis would be adequate. They [7] also carried out a
linear dynamic analysis for moderately long span cable-
stayed bridge to investigate the seismic response of the
cable-stayed bridges to both uniform and multi-support
excitations using the time domain analysis.

So far as the effect of spatially varying ground motion
on the response of bridges is concerned, considerable
interest has been shown by various researches. Harichan-
dran [11,12] had shown that the assumption of fully
coherent support motions may be over-conservative for
some bridges and under-conservative for others. Zerva
[13] showed that the effect of the spatial correlation of
ground motion mainly depends upon the dynamic
characteristics of the structure. Soliman and Datta [14]
showed that the inclusion of the spatial correlation of
the ground motion in the seismic analysis of bridges lead
to changes in the response by varying degrees depending
upon the type of the power spectral density function of
the ground motion used.

Despite the previous researches on the dynamic
response of cable-stayed bridges, the seismic behaviour
of the cable-stayed bridges subjected to random ground
motion is not thoroughly investigated. The research is
still continuing.

Herein, a frequency domain spectral analysis for
obtaining the response of cable-stayed bridges to par-
tially correlated stationary random ground motion is
presented. A continuum approach, along with a matrix
formulation, is used for finding the seismic response of
the bridge. The response analysis duly considers the
effect of differential support movements, the angle of
incidence of the earthquake and the modal correlation
between different modes of vibration. Using the pro-
posed approach, the responses of a cable-stayed bridge
are obtained under a set of parametric variations. The
parameters include the tower-deck inertia ratio, the angle
of incidence of earthquake, the ratio between the three
principal components of ground motion, the number and
nature of mode shapes being considered, the nature of
the power spectral density function (psdf) of the ground
motion, and the spatial correlation function.

2. Seismic excitation

The seismic excitation is considered as a three compo-
nent stationary random process. The components of the
ground motion along an arbitrary set of orthogonal direc-
tions will be usually statistically correlated. However, as
observed by Penzien and Watable [15], the three compo-
nents of ground motion along a set of principal axes are
uncorrelated. These components, directed along the prin-
cipal axes, are usually such that the major principal axis
is directed towards the expected epicenter, the moderate
principal axis is directed perpendicular to it

(horizontally) and the minor principal axis is directed
vertically. In this study, the three components of the
ground motion are assumed to be directed along the prin-
cipal axes. Each component is assumed to be a stationary
random and partially correlated process with zero mean
characterized by a psdf. The psdf of ground acceleration
in each direction is defined by

Sügüg
(v) = uH1(iv)u2 uH2(iv)u2S0 (1)

in which S0 is the spectrum of the white-noise bed rock
acceleration;uH1(iv)u2 and uH2(iv)u2 are the transfer
functions of the first and the second filters representing
the dynamic characteristics of the soil layers above the
bedrock, where

uH1(iv)u2 =
1 + (2zgv/vg)2

[1 − (v/vg)2]2 + (2zgv/vg)2










uH2(iv)2 =
(v/vf )4

[1 − (v/vf )2]2 + (2zfv/vf )2 (2)

in which vg, zg are the resonant frequency and damping
ratio of the first filter, andvf, zf are those of the
second filter.

The cross spectrum between the random ground
motion at two stationsi,j along the bridge is described
by that given by Hindy and Novak [16] as:

Sügüg
(rij ,v) = Sügüg

(v) rij (v) (3)

in which Sügüg
(v) is the local spectrum of ground accel-

eration as given in equation (1), which is assumed to be
the same for all supports andrij(v) is the function of
correlation function between two excitation points rep-
resented by

rij (v) = Exp (−cL v/2pvs) (4)

in which L is the separation distance between stationsi
and j measured in the direction of wave propagation;c
is a constant depending upon the distance from the epic-
enter and the inhomogeneity of the medium;vs is the
shear wave velocity of the soil; andv is the frequency
(rad/s) of the ground motion. Apart from the correlation
function given by equation (4), the cases of fully corre-
lated and uncorrelated ground motions at the supports
are considered in the study.

For one-sided spectrum it is well-known that

s2
üg

= S0FE`

0

uH1(iv)u2 p uH2(iv)u2dvG (5)

wheres2
üg

is the variance of ground acceleration. Thus,
by defining the filter characteristicsvg, zg, vf, zf and
specifying a standard deviation of the ground acceler-
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ation süg
, the psdf of the ground acceleration can be

completely defined.
The psdfsSugug

(v) andSu·gu·g
(v) of the ground dis-

placement and velocity are related toSügüg
(v) by

Sugug
(v) = Sügüg

(v)/v4

Su·gu·g
(v) = Sügüg

(v)/v2 (6)

3. Assumptions

Following assumptions are made for the formulation
of the problem:

(i) the bridge deck (girder) and the tower are assumed
to be axially rigid;

(ii) the bridge deck is assumed to be a continuous
beam; the beam does not transmit any moment to
the tower through the girder–tower connection;

(iii) towers are assumed fixed at the locations of the pier
or well foundation;

(iv) cables are assumed straight under high initial ten-
sions due to dead load and capable of supporting
negative force increment during vibration without
losing its straight configuration.

(v) an appropriate portion of the mass of the cables is
included in the dynamic analysis of the bridge deck,
and is assumed to be uniformly distributed over the
idealized deck (in addition to the deck mass);

(vi) beam–column effect in the stiffness formulation of
the beam is considered for the constant axial force
in the beam; its fluctuation due to fluctuating ten-
sion in the cable is ignored for the stiffness calcu-
lation of the beam-column. Further, cable dynamics
is ignored for the bridge deck vibration, i.e. the ten-
sion fluctuations in the cables are assumed as quasi-
static, and not introduce any nonlinearity in the sys-
tem.

4. Modelling of the bridge deck

The bridge deck is idealized as continuous beam over
the outer abutments and the interior towers as shown in
Fig. 1a,b and the effect of the cables is taken as vertical
springs at the points of intersections between the cables
and the bridge deck. Furthermore, the effect of the spring
stiffness is taken as an additional vertical stiffness to the
entire flexural stiffness of the bridge.

5. Vertical stiffness of the bridge due to cables

Referring to Fig. 2a, the fluctuation of tension in theith
cable at any instant of timet can be written as:

hi(t) = Kiv(xi,t) sin ai + KiDj (t) cosai (7)

where Ki = EcAc,i /Li is the stiffness of theith cable;
v(xi,t) is the displacement of the girder at timet at the
joint of ith cable with the girder;Dj(t) is the horizontal
sway of the tower at thejth tower–cable joint connecting
the ith cable;ai is the angle of inclination of theith cable
to the horizontal (measured clock-wise from the cable
to the horizontal line as shown in Fig. 2a;Ac,i,Li are the
cross sectional area and the length of theith cable and
Ec is the equivalent modules of elasticity of the straight
cables under dead loads.

The changes in tensions in the array of cables can be
put in the following matrix form:

hhjNcx1 = [A]NcxNd hvjNdx1

+ [B]NcxNt hDjNtx1 (8)

where Nc= number of cables (or pair of cables in case
of a two-plane cable-stayed bridge); Nd is the number
of unrestrained vertical d.o.f.s of the girder at the cable
joints; Nt is the number of horizontal tower d.o.f.s at the
cable-tower joints;hvj, hDj are the girder and the tower
displacement vectors;hhj is the vector of incremental
cable tensions; [A] and [B] matrices are formed by pro-
per positioning of the elementsKi sin ai and Ki cos ai

as given by equation (7), respectively.
The deflection of the tower at the cable joints can be

obtained by assuming that the tower behaves like a verti-
cal beam fixed at the bottom end and restrained horizon-
tally at the level of the bridge deck and subjected to the
transverse forceshi(t)pcosai, (i = 1, Nc) at the cable
tower joints as shown in Fig. 2b and are given by:

hDj = [C] hhj (9)

where the elements of the matrix [C] can be easily
obtained from the deflection equations of a vertical beam
fixed at the bottom and constrained horizontally at the
deck level. EliminatinghDj from equations (8) and (9),
the relation between the vectors of incremental cable ten-
sions and girder deflections may be written as:

hhj = [[ I ] − [B][ C]]−1 [A] hvj (10)

where [I ] is an unit matrix of order Nc.
Premultiplying both sides of equation (10) by a diag-

onal matrix [D] of orderNc, where the diagonals consist
of the terms of sinai(i = 1 to Nc), equation (10) can be
written as

hhv,bj = [Kc,b] hvj (11)

wherehhv,bj is the vector containing the vertical compo-
nents of incremental cable tensions, and [Kc,b] = [D]
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Fig. 1. Problem identification:a layout of the bridge under multi-component of support excitations;b idealization of the bridge deck.

Fig. 2. Tower–deck displacement relationship:a displacement due to the fluctuation of theith cable;b main system and the displacement of
the tower.
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[[ I ] − [B][ C]]−1[A] is the stiffness matrix of the bridge
contributed by the cables in transverse vibration.

6. Equation of motion

The equation of motion for the relative vertical vibration
y(xr,t) of any segmentr of the idealized deck with con-
stant axial forceNr, neglecting the shear deformation and
rotary inertia, is given by

EdIr

­4y(xr,t)
­x4

r

+ Nr

­2y(xr,t)
­x2

r

+ Cr

­y(xr,t)
­t

+
Wr

g
­2y(xr,t)

­t2
= P(xr,t) (12)

wherer = 1,2,%,Nb and

P(xr,t) = −
Wr

g O8
j=1

Qj (xr)f̈j (t)

in which EdIr, Wr, g, Ed, Nr are the flexural rigidity, load
per unit length, acceleration due to gravity, the modules
of elasticity of the deck material and the axial force
given to the beam segmentr due to cables, respectively.
p(xr,t) is defined as the applied load due to seismic exci-
tations at different support degrees-of-freedom.f̈j(t),
j = 1,2,%,8 are the accelerations at the different support
degrees-of-freedom andQj(xr ) is the vertical displace-
ment of therth segment of the bridge deck due to a unit
displacement given at thejth degree of freedom of the
supports.Qj(xr) is obtained by solving the entire bridge
(i.e. deck, towers and cables) considering no moment
transfer between the deck and the tower by a separate
analysis using stiffness approach.

7. Mode shapes and frequencies

The expression fornth mode shape (undamped) for ver-
tical vibration of therth segment of the bridge deck is
given by:

fn(xr) = Anr cosbnrxr + Bnr sinbnrxr

+ Cnr coshgnrxr + Dnrsinhgnrxr (13)

where Anr, etc., are integration constants expressed in
terms ofnth natural frequency of vertical vibrationvbn

and

bnr = ! Nr

2EdIr

(Znr + 1) ; gnr = ! Nr

2EdIr

(Znr − 1)

where

Znr = !1 +
4EdIrWr /g

N2
r

v2
bn

The origin for therth segment is fixed at the left end as
shown in Fig. 1b.

Utilizing equation (13), a relation between end dis-
placements (vertical deflection and slope) and end forces
(shear forces and bending moments) for therth segment
may be written as:

hFjr = [K]r hxjr (14)

wherehFjr and hxjr are the end force and end displace-
ment vectors and [K]r is the flexural dynamic stiffness
of the rth beam segment. The integration constantsAnr,
Bnr,...etc. are related to the end displacements as

hCjr = [T]r hxjr (15)

wherehCjr is the vector of integration constants contain-
ing Anr, etc., and [T]r is the integration constants matrix.
The sign conventions used in the dynamic stiffness for-
mulation are shown in Fig. 3. Both [K]r and [T]r are
given by Chatterjee and Datta [8].

Assembling the stiffness [K]r for each element (r ) and
adding the vertical stiffness due to cables, the overall
stiffness of the bridge [K] is obtained. The condition
for the free vibration of the bridge deck may then be
written as

[K] hUj = h0j (16a)

where hUj is the unknown end displacement vector for
the beam corresponding to the dynamic degrees-of-free-
dom (see Fig. 3). Using equation (16a) leads to

det [K] = 0 (16b)

Using Regula–Falsi approach the natural frequencies for
the system are determined from the solution of equation
(16b). Once the natural frequencies are obtained, mode
shapes can be known through the use of equations (16a),
(16b) and (13).

8. Modal analysis

The modal analysis for the relative vertical displacement
y(xr,t) for any point in therth deck segment is given as:

y(xr,t) = O`
n=1

fn(xr)qn(t) r = 1,2,%,Nb (17)

in which fn(xr) is the nth mode shape of therth beam
segment of the bridge deck andqn(t) is the nth gen-
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Fig. 3. Sign conventions used in the dynamic stiffness formulation.

eralized coordinate. Substituting equation (17) into
equation (12), multiplying byfm(xi ), integrating w.r.t.
Lr and using the orthogonality of the mode shapes
leads to

q̈n(t) + 2znvnq[b4]
n(t) + v2

nqn(t) = P̄n(t) n = 1,%,M

(18)

in which zn andvn are the damping ratio and the natural
frequency of thenth vertical mode;M is the number of
modes considered andP̄n(t) is the generalized force
given as

P̄n(t) = O8
j=1

Rjn(xr)f̈j (t) (19)

whereRjn is the modal participation factor given by

Rjn = −
ONb

r=1

Wr

g ELr

0

Qj (xr)fn(xr)dxr

ONb

r=1

Wr

g ELr

0

f 2
n(xr )dxr

in which Qj(xr) is the vertical displacement in therth
beam segment of the bridge deck due to unit displace-
ment given in thejth direction of support movement.

Equation (19) can be put in the following matrix form

P̄n(t) = [Gn]hf j (20)
in which [Gn] = hG1n,%,G8nj; hf jT = hf̈1(t),%,f̈8(t)j

where [Gn] is the generalized force coefficients at the
nth mode and can be obtained by equation (19).

9. Spectral analysis

9.1. Evaluation of the relative displacement

Applying the principles of modal spectral analysis, the
cross power spectral density function between two gen-
eralized co-ordinatesqn(v) andqm(v) is given by

Sqnqm
(v) = Hp

n(v)Hm(v)SP̄nP̄m
(21)

in which Hn(v) is the nth modal complex frequency
response function given by

Hn(v) = [(v2
n − v2) + i(2znvnv)]−1 (22)

Hp
n(v) denotes the complex conjugate ofHn(v). SP̄nP̄m

can be written in the matrix form as:

SP̄nP̄m
= [Gn][ Sff][ Gm]T (23)

[Sff] is the psdf matrix for the ground motion inputs (of
size 8× 8) which are the support accelerations, i.e.f̈1(t),
f̈2(t), f̈3(t), f̈4(t), f̈5(t), f̈6(t), f̈7(t), f̈8(t).

Any element of the matrix [Sff] may be written in the
form rij(v) Sügüg

(v) whererij(v) is the correlation func-
tion between theith andjth support;Sügüg

(v) is the psdf
of ground acceleration (üg = f̈j,j = 1,2,%,8).

Thus, [Sff] may be assembled in the form

[Sff] = [R] Sügüg
(v) (24)

where [R] is a matrix of size 8× 8. Using the expression
given in equation (21), the elements of the matrix [Sqq]
may be formed which has the dimension ofM × M.
Since the relative displacementy(xr,t) is given by

y(xr,t) = [f(xr)](1×M) hqj(M×1) (25)

the psdf of the responsey(xr,t) is given by

Syy(xr,v) = [f(xr)] [ Sqq] [ f(xr)]T (26)

9.2. Evaluation of the quasi-static displacement

The quasi-static component of the vertical displacement
at any point in therth deck segment at time (t) is
given as:

Q(xr,t) = [Q] hf j (27)

where [Q] = hQ1(xr) Q2(xr),%,Q8(xr)j; hf jT = hf1(t)
f2(t),%,f8(t)j
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Qj(xr) is the vertical displacement at any point in therth
beam segment of the bridge deck due to unit movement
of the jth support d.o.f. The psdf of the quasi-static dis-
placement at any point in therth deck segment is
given by

SQQ(xr,v) = [Q] [ Sf̄f̄] [ Q]T (28)

where [Sf̄f̄ ] is the psdf matrix for the ground displace-
ments at the support d.o.f.s and can be readily obtained
from the matrix [Sff].

9.3. Evaluation of the total displacement

The total displacement at any point of therth beam seg-
ment of the bridge deck at any time (t) can be written as

v(xr,t) = y(xr,t) + Q(xr,t) (29)

the psdf of the total vertical displacement can be
expressed as

Svv(xr,v) = Syy(xr,v) + SQQ(xr,v)

+ SyQ(xr,v) + SQy(xr,v) (30)

whereSyQ(xr,v), SQy(xr,v) are the cross power spectral
density functions between the relative and quasi-static
displacements. Using equations (20), (25) and (27), the
expression forSyQ(xr,v) may be obtained as:

SyQ(xr,v) = hfn(xr )jT p
(1 × M)

diag [Hn(v)]
(M × M)

p [G]
(M × 8)

p [Sff]
(8 × 8)

p hQj (xr)j(8 × 1)

n = 1,2,%,M; j = 1,2,%,8; r = 1,2,%,Nb (31)

where [Sff] is the cross power spectral density matrix of
the random vectorshf j and hf j, i.e. the support acceler-
ations and displacements.SQy(xr,v) is the complex con-
jugate ofSyQ(xr,v).

9.4. Evaluation of the bending moment

Using equations (25) and (27), and differentiating the
expression forv(xi,t) twice with respect tox, the follow-
ing expression for the bending moment can be obtained

EdIr

­2v
­x2 = OM

n=1

EdIr

d2f(xr )
dx2

qn(t) + O8
j=1

EdIr

d2Qj (xr )
dx2 fj (t) (32)

Similar expressions can be obtained for the psdf of the
bending moment at any point in therth beam segment

of the bridge deck as those derived for the total displace-
ment by replacingf(xr) and Q(xr ) by EdIr d2f(xr)/dx2

and EdIr d2Q(xr)/dx2, respectively.EdIr d2Q(xr)/dx2 is
obtained from the quasi-static analysis of the entire
bridge using the stiffness approach as mentioned before.

10. Parametric study

A double plane symmetrical cable-stayed bridge (as con-
sidered by Morris [10], Fig. 4) is considered for the para-
metric study with the following data:
Ed = Et = 2.0683× 1011 N/m2; Id = 1.131 m4; distributed
mass of the bridge over half width deck is
9.016× 103 kg/m; areas and initial tensions for the
cables (1–6) are 0.04, 0.016, 0.016, 0.016, 0.016,
0.04 m2 and 15.5× 106, 5.9× 106, 5.9× 106, 4.3× 106,
5.9× 106, 15.5× 106 N, respectively.

In addition, the following data are assumed for the
analysis of the problem,Ec = Ed; z = 0.02 for all modes;
the connections between the cables and the towers are
assumed to be of hinged type and the tower-deck inertia
ratio is taken as four unless mentioned otherwise; the
ratio between three components of ground motion
(sx:sy:sz) is taken as 1.0:1.0:1.0 and the major principal
axis of the ground motion is directed with the longitudi-
nal direction of the bridge, unless mentioned otherwise.

The random ground motion is assumed to be a homo-
geneous stochastic process which is represented by
Clough and Penzien double filter psdf given by
equation (1) with two sets of filter coefficients rep-
resenting the soft and firm soils, respectively. For the
soft soil, the coefficients arevg = 6.2832 rad/s;
vf = 0.62832 rad/sec;zg = zf = 0.4, while those for the
firm soil are vg = 15.708 rad/s; vf = 1.5708 rad/s;
zg = zf = 0.6. Another set of filter coefficients is also con-
sidered in the study namely,vg = 31.416 rad/s;
vf = 3.1416 rad/s; zg = zf = 0.8. This represents the
ground motion in a very firm soil medium. The three
psdfs corresponding to the three sets of filter coefficients
are shown in Fig. 5. The spatial correlation function used
in the parametric study is given by equation (4) in which
the value ofc is taken as 2.0 andvs is taken as 70, 330,
550 m/s for the first, second and third psdfs, respect-
ively. The r.m.s. of ground acceleration is taken assüg

= 0.61 m/s2. The first 10 frequencies and the corre-
sponding nature of the mode shapes are given in Table 3.

10.1. Effect of mode shapes on the response

The effect of the number of modes on the response quan-
tities of interest is shown in Table 1. It is seen from the
table that the first six modes practically govern the over-
all response for displacement, whereas practically 10
modes are required to compute the bending moments
correctly. There is practically no change in the responses
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