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Abstract

With emphasis on the simple plant location problem (SPLP), we consider an impbrtanl family of discrete, deterministic,
single-criterion, NP-hard, and widely applicable optimization problems. The introductory discussion on problem formulation aspects is
followed by the establishment of relationships between SPLP and set packing, set covering and set partitioning problems which all are
among those structures in integer programming having the most wide-spread applications. An extensive discourse on solution
properties and computational techniques, spanning from early heuristics to the presumably most novel exact methods is then
provided. Other subjects of concern include a subfamily of SPLP's solvable in polynomial time, analyses of approximate algorithms,
transformability of p-CENTER and p-MEDIAN to SPLP, and structural properties of the SPLP polytope. Along the way we attempt
to synthesize these findings and relate them to other areas of integer programming.

Introduction

The past two decades have witnessed an explosive growth in the literature on location problems. This is
not at all surprising since locational decisions is one of the more profitable areas of applied O.R. and ample
theoretical challenges are offered. However, among the myriads of formulations considered, only four of
these: p-CENTER, p-MEDIAN, SIMPLE PLANT LOCATION, and QUADRATIC ASSIGNMENT - at
times referred to as prototype location problems — have played a particularly dominant role. If seminal
works such as Fermat’s 1-MEDIAN from the early 1600’s and Sylvester’s 1-CENTER brain teaser from
1857 are disregarded, all four problems entered the stage in their present form in the period 1957-64.

In contrast to p-CENTER and p-MEDIAN treated at length in textbooks including Francis and" White
(1974), Christofides (1975), Jacobsen and Pruzan (1978), Handler and Mirchandani (1979) and in the
survey by Krarup and Pruzan (1979), we have long sought in vain for a comprehensive exposition with
particular focus on the simple plant location problem (SPLP). This is surprising since, judging from a rough
estimate of the number of papers devoted to each prototype problem and from their applicability to
real-life decision-making, SPLP seems to have attracted most attention. In chronological order, early
reviews and shorter summaries of the state of the art can be found in Balinski and Spielberg (1969),
ReVelle et al. (1970), Eilon et al. (1971), Hansen (1972), Elshafei and Haley (1974), Francis and White
(1974), Kaufman (1975), Salkin (1975), Jacobsen (1977), Guignard and Spielberg (1977), Jacobsen and
Pruzan (1978) and Cornuéjols (1978).
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Kurt Spielberg, Philip Wolfe, and Stanislaw Walukiewicz for valuable suggestions on the preliminary version of this paper. We also
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The present exposition is an attempt to fill the gap. To give adequate credit to all previous contributors
would be a Herculian task, far beyond our level of ambition; instead, we shall consider some of the main
findings, spanning the SPLP-literature from what appears to be the first formulation of the problem in the
early 60’s to the most recent developments, represented by a series of papers currently under publication.
Along the way we shall attempt to synthesize these findings, relate them to other areas of general integer
programming and suggests likely courses of future developments.

While most well-defined problems bear unambiguous names, SPLP has been dealt with in the literature
under a wide variety of different titles usually composed of an adjective (uncapacited, simple, optimal) and
a substantive (plant, warehouse, facility, site) followed by the word location. Including omission of the
adjective, we have among the possible combinations seen ten or so of these employed so far. And new
contributions to the name confusion arise if ‘economies-of-scale’ or ‘fixed-cost discrete space location-alloc-
ation’ and the like are incorporated, not to speak of the flock of variations, based upon word-to-word
translation into English of non-English designations. Even some familiarity with certain non-English
languages does not always suffice for identifying a SPLP-paper written in one of these via its title.

SPLP derives its name from the analogy to decision problems concerning the location of plants or
facilities (e.g. factories, warehouses, schools) so as to minimize the total cost of serving clients (e.g. depots,
retail outlets, students). We postulate that the major reason that SPLP has been the subject of so much
attention is that despite (or perhaps due to) its transparent structure, it has contributed to the formulation
and solution of a multitude of complex planning problems. Unfortunately, to the best of our knowledge
there does not exist a readily available list of such applications which could lend credence to our postulate;
we can though draw upon our own experience as consultants where we have utilized SPLP formulations as
the basis for providing decision inputs to real-world problems regarding the number, size, design, location,
and service patterns for such widely varied ‘plants’ as high-schools, hospitals, silos, slaughterhouses,
electronic components, warehouses, as well as traditional production plants.

In contrast to the other prototype location problems, SPLP permits in a sense the broadest framework.
Neither the number of plants to be located nor the transportation or communication pattern are
predetermined. Furthermore, the basic formulation of SPLP lends itslef readily to sensitivity analyses. In
addition, SPLP invites modifications which may permit more ‘realistic’ modelling. While SPLP is basically
a discrete, static, deterministic, one-product, fixed-plus-linear costs minimization problem formulation, it can be
modified to accommodate dynamiic, stochastic, multi-product, nonlinear cost minimization formulations. It can
also include prices as well as costs in its criteria and can also be used within the context of multicriteria
optimization. Last, but not least, there exists a veritable arsenal of well documented exact algorithms,
heuristics, relaxations, and simulation procedures, more or less tailored to provide solutions to SPLP’s.

It appears thus that the attention paid to SPLP is due to both its relevance for sundry decision problems,
its simple, easily grasped structure, and the availability of effective solution methods. There is however the
reservation that while p-CENTER and p-MEDIAN usually are dealt with in both continuous (planar) and
discrete (network) formulations, there is a dearth of literature as to formulations of SPLP in the plane. We
shall therefore be mainly concernced with the SPLP-family within the context of networks but briefly
comment the very rare exceptions in Section 13.

Our presentation of SPLP and its connections to close and more distant relatives is organized as follows:
Alternative symbolic formulations of SPLP are introduced and their properties are briefly discussed in
Section 1; furthermore, the blurred historical origin and some notational discrepancies are accounted for.
The relationships between SPLP and set covering, set packing, and set partitioning problems are
established in Section 2, emphasizing once more the applicability of SPLP, while Section 3 provides a
rudiment of computational complexity to demonstrate that SPLP (as could be expected) belongs to the
class of notorious optimization problems which is known as NP-hard. The five following sections deal with
solution methods and computational aspects. Like other difficult combinatorial problems, it is not
surprising that SPLP was only amenable to heuristics during the first years of its lifetime; a collection
covering the period up to 1966 is reviewed in Section 5. Numerous exact methods have appeared since
1966, culminating with the dual-based algorithms, rooted in Lagrangean relaxation, and claimed to be
‘close to the ultimate in efficiency’. The extensive selection presented in Sections 6-8 demonstrates the
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diversification of integer programming techniques adapted for SPLP over the years. We proceed in Section
9 with a class of specially structured SPLP’s solvable in polynomial time, and capable of modelling certain
‘classical’ production planning problems. Analyses of heuristics and relaxations for a composite formula-
tion having both p-MEDIAN and SPLP as special cases were initiated by Cornuégjols et al. (1977a) under
the heading ACCOUNT LOCATION and have since then enjoyed much fruitful research. Some of the
main results are summarized in Section 10 together with an observation due to Krarup and Pruzan (1981b)
stressing the need for further refinements of error analysis. Based on Krarup and Pruzan (1981c), where
convex combinations of p-CENTER, p-MEDIAN, and SPLP are integrated in a single model, it is shown
in Section 11 that p-CENTER and p-MEDIAN are transformable to SPLP. Structural properties of the
SPLP polytope are considered in Section 12 where certain families of facets are identified. Section 13, a
mixture between an appetizer and an annotated bibliography, deals with selected variants and extensions of
SPLP; pertinent keywords are capacitated, piecewise linear, dynamic, stochastic, continuous, multicom-
modity, multicriteria, investment and pricing.

1. Problem formulation

Given a finite set of possible locations for establishing new facilities or redimensioning already existing
facilities, SPLP deals with the supply of a single commodity (or standard productmix) from a subset of
these to a set of clients with a prescribed demand for the commodity. Facilities are assumed to have
unlimited capacity such that in principle any facility can satsify all demands. For given costs associated
with the facilities and with the direct transportation routes from facilities to clients, we seek a minimum
cost production/transportation plan (in terms of the number of facilities established, their locations, and
the amount shipped from each facility to each client) satisfying all demands. The constituents of SPLP are:

m : The number of potential facilities indexed by i, i € I = {1,...,m},
. n : The number of clients indexed by j, j €J = {1,...,n},

f; 1 The fixed cost of establishing facility i,

p; - The per unit cost of operating facility / (including variable production and administrative

costs etc.),

b; : The number of units demanded by client j,
t;;+ The transportation cost of shipping one unit from facility i to client j.,
It is customary to use the adjectives ‘open’ and ‘closed’ for designating the state of a facility. The cost of
sending no units from a facility is zero (i.e. the facility is closed) while any positive shipment from the ith
facility incurs a fixed cost f; (the facility is open) plus costs pi+1;; per unit produced at facility / and
transported to the client j. We introduce the m + mn variables ’

¥ ¢ ;= Lif facility i/ is open and 0 otherwise,
s;;+ Number of units produced at facility / and shipped to client j.

The full-blooded SPLP is the mixed-integer program:

min 2 2 (pi+tij)sij+ Efi}’i’ (1)
iel jeJ i€l
2 s;=b, JEJ, (2
i€l »
kiyi— 5;=0, i€l 3)

jeJ

5,20, ieljel, 4)
yie{O,l}’ iel - (5)

The m restrictions (3) are devices to ensure that the total fixed cost for a facility is incurred whenever
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positive shipments are made from it. The k’s are positive constants, not less than the maximal outflow
from the corresponding facilities. If all p,> 0, ,;= 0, no facility need ever ship more than the total amount
demanded, and each k; may be replaced by X, ,b,. Similarly, since under the assumption (p; +1¢,;) =0 it
will never pay to ship a larger number of units to a client than demanded, the inequalities (2) can be
replaced by equations.

Should negative ( p; +1,;) occur for a given data instance, we can by means of appropriately selected
constants perform a transformation so that the assumption above of nonnegativity holds: replace ( p; +¢,;)
by (p;+1;;) + a; all i, j where a = {a;} is an n-vector of constants such that |a;| = max,¢, {| p; + ¢;;||(p; +
t;;)<0}. This transformation will not affect the optimal solution to the given instance since the only effect
will be that the objective function is increased by the constant term 3¢, «;. _

Similarly, should any f; be negative which, from a practical viewpoint, is rather absurd, it pays to open
the ith facility irrespective of positive outflow or not. In such cases, f; is added to the objective function
(which hereby is reduced by a constant) and f; is replaced in (1) by zero. Without loss of generality (and
with the real-world applications in mind) we shall therefore assume all f; to be nonnegative.

Note that the formulation remains unaltered if we modify the definitions of f; and b; by the words ‘per
time period’. In this case the fixed costs will include per time period investment costs and fixed operating
costs corresponding to the minimal costs required to maintain an open facility.

Given the cost structure for SPLP, the decision problem is only considered to involve the flows (the s;;’s)
instead of both flows and facility design. The costs are assumed to adequately reflect the type, size, and
location of the facilities and to only depend upon whether or not flow occurs from a facility. Were the costs
also dependent upon the type and size of the facility to be located, the total costs could not be determined
from the flow alone but would have to involve decision variables corresponding to the type and size of each
facility as well. This subject is reconsidered in Section 13 where piecewise linear cost functions are
discussed.

For any given binary y-vector an optimal set of s;;’s is easily determined. Let P={i|y,=1} be a
nonempty subset of open facilities and let P(j)={i € P|(p;+1;;)=min, ¢, {p, +1,,}}. If for all j,
s;;+= b; for some i € P(j) (:= means ‘is set equal to’ and ‘some’ indicates that ties are resolved arbitrarily)
and s;;: = 0 otherwise, we have evidently found an optimal production /transportation plan with respect to
the given set P simply by assigning each client to the ‘cheapest’ open facility. In this sense, the y’s can be
claimed to constitute the essential variables of the problem, and for that reason some authors prefer to
distinguish between the strategic variables (y;) and the tactical variables (s;;). Accordingly, the number of
distinct solutions (in terms of the strategic variables) amounts to 2™ — 1, the number of combinations of
open and closed facilities, excluding the case where all facilities are closed. Note for a comparison that the
total number of distinct assignments of clients to facilities (each client is served by, or assigned to exactly
one facility) is m”".

How trivial it may seem, the fact that we only have to consider solutions where every client is supplied
by a single facility, plays a significant role for several of the computational methods to be presented. To
stress its importance, we state it formally:

Proposition 1. SPLP has the Single Assignment Property.

Based on this observation, some simplification of the formulation almost suggests itself. Let c; i =b(p;
+1;;) be the fotal cost for supplying all of client j’s demand from the ith facility, and let x;; denote the
fraction of client j’s demand supplied from that facility. As discussed previously, all ¢, ; can be assumed
nonnegative.

_For a given subset P C I of open facilities, the total costs incurred for an optimal solution with respect to
Pis X, min;cpc;; + Z,cpfi- SPLP is then the problem of identifying a subset P minimizing the total costs.
The following version may thus be referred to as:

SPLP: Combinatorial formulation

min{ > minc;; + > f,} (6)

Pl jey i€P iep
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Upon inclusion of the additional constraint | P| = p, (6) is transformed to a model which for /=J and /=0
is the p-median problem in a network with vertex set I:

p-MEDIAN: Combinatorial formulation

min { > minc,.j]
perpl=p \ jo; ieP

where ¢;; usually is interpreted as the (weighted) distance between vertices i and j.

Both SPLP and p-MEDIAN are special cases of a composite model known as Account Location which
plays a key role for the algorithmic analyses exposed in Section 10. '

For a given SPLP at least one facility has to be open in any feasible solution ( y,x); feasibility is assured
by the condition II,,(1 —y,) =0. By introducing m?n auxiliary, binary variables u;; defined for all i,
kel jeJ by

Uy = {0 if (c;;<cy;) or (¢;;= ¢, and i<k),
! 1 otherwise
we obtain the following formulation of SPLP:

SPLP: Pseudo-boolean formulation
min E 2 Ci i H (1 _)’k“ikj) + 2 Ly

i€l jeJ kel ier
I 1-y)=0, y,u=0o0rl.
i€l

For L sufficiently large, Hammer (1968) replaces the single constraint by the term L II,;,(1 —y;) added to
the objective function. SPLP is then reduced to minimizing an unrestricted, real-valued function of binary
variables.

As to a mixed-integer formulation resembling (1)-(5), there are other ways of linking the fixed costs to
positive shipments than by means of (3). To obtain the desired effect, we can simply require y, — x; ;=0 all
i, j. Another possibility is to introduce a large positive number L assuming that prohibited or blocked
transportation routes (i, ), if any, correspond to ¢;; = L. Let Q, be the subset of indices referring to clients
which can be supplied from facility / and let n;<<n be the number of clients in that subset, i.e.
Q;= {Jjle;; <L}, n;=|Q;|- Two alternative formulations of SPLP can now be stated as the (mixed) 0-1
programs:

SPLP with disaggregated (strong) or aggregated (weak ) constraints
min E 2 ¢;iXiy+ E Ly (7)

i€l jes iel
Exijzl’ JEJ, (8)
i€r )

either y,—x,;=0, iel,jeJ (disaggregated or strong), (9a)

or ny— 2 x,;=0, iel (aggregated or weak), (9b)

jeJ .

x,;=0, ' iel,jeld, (10)
y;=0orl, i€l (11)

In the sequel, SPLP-S and SPLP-W refer to the two formulations with Strong and Weak constraints
respectively.

Whether (9a) or (9b) is employed does not affect the optimal solution. However, several computational
procedures are based on an LP-relaxation in which the integrality constraints (11) are replaced by the less




J. Krarup, P.M. Pruzan / The simple plant location problem 41

restrictive requirements y; = 0, i € I. In such cases it is important to be aware of the effect of replacing the
m X n ‘disaggregated’ inequalities (9a) by the ‘aggregated’ set of the i inequalities (9b). Advantages and
drawbacks are discussed when we focus on the computational aspects of SPLP.

1.1. The origins of SPLP: Who was first?

The ‘who was first — question’ may seem of minor importance only, but the somewhat obscure history
and the incorrect references made now and then by various authors justify comment.

Disregarding problem formulations such as that in Baumol and Wolfe (1958) which upon appropriate
redefinition of terminology can be interpreted as including SPLP as a special case, the first explicit
formulation of SPLP is frequently attributed to Balinski (1966) whose expository article on integer
programming includes the mixed-integer formulation (7)-(11) with the strong constraints (9a). The paper
was presented at the The IBM Scientific Symposium on Combinatorial Problems in March 1964 but
remained unpublished until 1966. After some search, a copy was finally made available to us by Kolen
(1978) who drew our attention to an even earlier source, a Mathematica report by Balinski and Wolfe
(1963) referred to in Balinski (1966), Wolfe was then approached for a copy; his reply (Wolfe (1980))
includes the following remarks: “The paper by Balinski and myself, ‘On Benders decomposition and a
plant location problem?’, has disappeared. We indeed wrote it. We do not remember too well what was in it.
Several years ago Balinski, noticing that it was not in his files, asked me for a copy; I didn’t have it either.
According to him, it also turned out not to be in Mathematica’s official archives”.

However, SPLP’s are also dealt with in the pioneering papers by Kuehn and Hamburger (1963) and
Manne (1964). Both are often cited and will deservedly be discussed in Section 5.

The Journal of Farm Economics is not exactly a traditional forum for locationists and discrete
optimizers; accordingly, apart from researchers in the field of agricultural management, only a very few
authors have noticed the seminal paper by Stollsteimer (1963). Based on the unpublished Ph.D. thesis,
Stollsteimer (1961), he proposes four models of which the second actually is a SPLP. In a historical context,
it should not detract from his contribution that the solution method devised is mere complete enumeration,
thus allowing any cost structure whatsoever. On the contrary, judging from the annotated bibliography Lea
(1973), in spite of its obvious weaknesses, Stollsteimer’s work managed to generate a flock of Ph.D. theses
and published papers on agricultural economics; see e.g. Ladd and Halvorson (1970), Chern and Polopolus
(1970), and Warrack and Fletcher (1970), all discussed in some detail in the monograph, Elshafei and
Haley (1974).

Thus, Hansen et al. (1981) seem pretty close to the truth by owing credit to Balinski, Manne and
Stollsteimer for the first formulation of SPLP. Is the full truth then that SPLP was formulated indepen-
dently by Stollsteimer, Balinski (and possibly Wolfe), Kuehn and Hamburger, and Manne? The lack of
cross references between their works bears evidence to this hypothesis.

1.2. A comment on the terminology and notation employed.

SPLP can be viewed upon as a covering problem: by selecting an entry (i,j) corresponding to the
transportation route from facility i to client j, we have in a sense covered the jth column by the ith row.
However, it is customary in formulating mathematical programming problems that the right-hand side
literally is on the right-hand side of the coefficient matrix; consequently, SPLP should rather be a problem
of covering rows by means of columns. To conform to this commonly accepted rule, I and J should have
been interchanged in the formulation. There seems however, to be a discrepancy between two different
traditions: of all formulations of SPLP found in the literature, only a few are consistent with the notion of
covering rows while the vast majority in principle apply the same notation as was adopted in (7)-(11). We
felt tempted to join the first group (authors of future SPLP-papers are strongly urged to do so) but decided
not to because of the confusion this would cause readers who will consult earlier works referred to here.

To avoid perpetual redefinitions of the most common concepts employed, we assume wherever
appropriate that the three groups of identifiers (1, i, m, £, p;, Q;, n;, ), (45 $i55 €55 X;;) and (J, j, n, b;) are
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I: set of J: set of
facilities clients
1o mxn direct transport-f0 1
Facility i: 20 ation routes (i,j) o2
£+ fixed cost t; ¢ unit transp. cos L
gi’ ‘fml't prfii cost s13. units shipped : Ciient 31 ]
.= 1jle,. : < :
i ij in e = = = = = =D D =D o j bs: demand
n; = IQil c..: total transp.cost| .
y.:0-1 variable x,.: fraction of demand\
i 17
ma On

Fig. 1. Overview of ‘standard’ identifiers employed: Normal typing: Constants (data instance), Jtalic typing: Variables.

reserved for ‘standard’ purposes as visualized in Fig. 1.

Furthermore, to simplify the notation, we adopt X;, max,{ }, y,=0 or 1, all i, ... as shorter forms of
Sies (or ), max; o, { }, 5, €{0,1}, Vi€, ... respectively, provided that the meaning is clear from the
context. Finally, for example, SPLP (10, 20) will refer to a data instance of SPLP with m =10 and n =20,
similarly, SPLP (2,n) comprises all data instances with m =2.

2. SPLP and its relations to packing, covering and partitioning

Via seven transformations we shall establish relationships between SPLP and three of the most widely
studied structures in (pure) integer programming: set packing, set covering and set partitioning. The
purpose is twofold: to provide further evidence as to the postulated versatility of SPLP models in practice
and to provide the background for a series of theoretical results with particular emphasis on computational
complexity.

For finite sets  and J, let A = {a;;} be an m X n matrix of zeros and ones. To conform to the notational
conventions set forth in the previous section, we shall in the sequel associate the variables with the rows of
A. Thus, a subset T C I of rows defines a cover of J if T, ja; ;=1, all j. I* C 1 is called a partition (exact
cover) of J if equality holds for all j, i.e. if 2;c;.a;;= 1. For all 4, let y;=1 if row i is in the cover and 0
otherwise, and let f; be the cost incurred for y; = 1. The (weighted) set covering problem is to find a cover of
minimum cost

min EﬁYi’
2ya;=1, jeJ, y=0orl, alli

or, in a more compact notation

SET COVER
min{ fy| yA=e,y,=0or 1, all i}

where e is an n-vector of ones. Accordingly, the (weighted) set partitioning problem reads
SET PARTITION -
min{ fy| yA=e,y,=0o0r 1, all i}.
By reversing the inequality sign of the constraint set y4 =e in SET COVER and by changing the
objective from minimization to maximization, we arrive at the (weighted) set packing problem

SET PACKING
max{ fy| yA <e,y,=0or 1,alli}.
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The seven transformations T1-T7 relating SPLP to the three problems formulated above or converting
SET PARTITION to either SET COVER or SET PACKING are visualized in Fig. 2. The transformations
will later be summarized in Propositions 2—4 and illustrated by a numerical example.

Fig. 2. Overview of transformations T1-T7.

In all cases involving SPLP, we will demonstrate the transformations based upon SPLP-S (SPLP with
strong constraints). We shall first show how SPLP-S via simple transformations T1 and T2 can be brought
to the form of SET PARTITION and SET PACKING respectively such that optimal solutions to these will
also solve SPLP optimally.

Let y;:=1—y, all i, and let r,, all i, j be nonnegative slack variables used to replace the disaggregated

inequalities (9a) by equations. Now, SPLP-S becomes
Inin E 2(‘,1 u 2/;)_);—*—2]‘;’
i i
zx,.j:l, allj, x,+y+r,=1, ali,j,
i
Xijs i =0, alli,j, 7=0orl, alli.

Without affecting the optimal solution, we can explicitly require all x;; to be 0 or 1 since SPLP as noted in
Proposition 1 has the Single Assignment Property.Thus, all 7;; will be either 0 or 1 as well. The SPLP = SET
PARTITION transformation follows directly from the defmmons of y; and r;;:

T1: SPLP = SET PARTITION
min 3 Seyx, =345 (+34).
L 4 i
Ex.-,:l, allj, x,;+y+r;=1, alli,j,
Xijs lijp Vi = Oorl, alli,j.

The term Z, f; in the objective function is shown enclosed in parentheses to indicate that it is constant.

As to transformation of SPLP-S to SET PACKING, we retain the definition of y as y;:=1—y,, all i.
Furthermore, for all j, let w; be a nonnegative ‘artificial’ slack variable used to convert the 1 equations (8)
into inequalities, i.e. w;+3Z,x;;=1, w;=0 or Z;x;;<1, all j. To assure that all w; become zeros in an
optimal solution to SPLP, we assoc1ate with each of these slack variables a suff1c1ently large’ weight L in
the objective function. To obtain the desired effect, it suffices to choose L > max; {min,{ f;+ ¢;;}}. Since a
solution x minimizing some function g(x) will also maximize —g(x), and since we, as before, can restrict

all x;,’s to be either 0 or 1, the objective function for SPLP becomes

mmE EC., Xy = STt LIw+ 2,
i j i

or, for w;=1— E,-x,-j, all j
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T2: SPLP = SET PACKING

max EE(L_CU)XU’*'E./J: (—nL_E-f;')’
i i i
2x, <1, alj, x;+y=<I1, alij,

X, yi=0orl, alli,j.

As just shown, SPLP can be viewed as a highly structured special case of both SET PARTITION and SET
PACKING in the sense that a substantial part of each coefficient matrix — as will be clearly seen from
Example 1 — is an identity matrix.

To relate SPLP to SET COVER, consider the following specially structured SPLP where the ith facility
(apart from the fixed cost incurred) can either serve or cover the jth client at no cost (¢;; = 0) or, if this is
not the case, then it cannot serve that client at any finite cost (c;; = o). Thus, to solve an instance of SPLP
(m, n) for some f and with all ¢;;=0 or oo is merely to find a cover (i.e. a subset of facilities covering all
clients) of minimuin costs, that is, to solve the instance of SET COVER defined by m, n, A, f where a;;: =1
if ¢;;=0 and a,;:= 0 otherwise. ,

This transformation (SPLP = SET COVER) is based on the very rigorous assumption ¢;; = 0 or oo, all /,
Jj, and will therefore not be included in the general results. However, the transformation SPLP=SET
COVER, valid for all data instances, will be established later via T1 and T4 as depicted in Fig.2. On the
other hand, the inverse transformation T3: SET COVER = SPLP applies for any data instance m, n, 4, f of
SET COVER. If a feasible solution exists (clearly, a sufficient condition is that no column of A4 consists
entirely of zeros) then an optimal solution to SET COVER can be found as an optimal solution to
SPLP(m, n) with the given f-vector and ¢ = {c;;) defined by ¢;;: =0 if a;;= | and infinite otherwise.

The following two transformations do not include SPLP explicitly but relate SET PARTITION to either
SET COVER (T4) or SET PACKING (TS5) respectively.

While any data instance of SET PACKING admits feasible solutions (e.g. a null vector or any unit
vector), feasibility of a data instance for SET PARTITION is a rather intricate matter. Assume however
that an instance of SET PARTITION defined by m, n, A4, f is feasible. Then the following problems where
y;=0 or 1 throughout, are equivalent in the sense that their optimal solutions coincide

min[ 2l Eyiaijz 1, allj}a
i i
min[ S Ly LYw| —w+ 2 ya,;=1,w=0, allj}
i J i
for L>3,f. We replace w; by —1+ Z,,a;; in the objective function and obtain
min{—Ln +2 ( fit LEaij))’il 2)’:‘“:‘j> 1, a“j}
i j i
or

(—Ln)+ min{( f+AeL)y| yd=e)
which is SET COVER. Once again, as in T1 where a constant term I, f; was included in the objective
function, the objective function in T4 also includes a constant, here — Ln.
Another equivalent formulation of min{Z, f,y,|Z, y;a;;= 1, all j} is -
min{ Eﬁ.y,.-!-szj] w; + 2a,;=1,w=0, allj},
i j i

for L>3,f; as before. Proceeding in the same manner as above, we obtain

min{Ln+ > (f,.—LEa,-j)y,] 2na;<1, allj}
. i Jj i
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or
(—Ln)=max{(~f+AeL)y| yA <e)
which is SET PACKING.
Thus, for any data instance, m, n, 4, f of SET PARTITION for which a feasible solution exists, an
optimal solution can be found by solving either the instance of SET COVER defined by m, n, A, AeL + f
or the instance of SET PACKING defined by m, n, 4, AeL — f where L> 73, f. in both cases.

By showing the number of variables and constraints for both the original problem and its transformed
version in each case, the five transformations developed so far can be summarized as

Proposition 2. Number of Number of
var. constr. var. constr.
T1: SPLP-§ m+mn n+mn=SET PARTITION m+2mn n-+mn
T2: SPLP-S m-+mn n+mn=SET PACKING m-+mn  n+nn
T3: SET COVER m n = SPLP-S m n-+mn
T4: SET PARTITION m n = SET COVER m n
T5: SET PARTITION m n = SET PACKING m n

The relationships established via T1-T5 have, in some form or other appeared in the literature. The
earliest publication year found for each is: T1: According to Guignard and Spielberg (1977), this
transformation was discussed among Hoffman, Johnson and Padberg and suggested to the authors by
Hoffman. T2: Padberg (1979); T3: Krarup (1967), T4: Lemke et al. (1971); T5: Balas and Padberg (1975b).

As to the transformation T4 in the inverse order, Balas and Padberg (1976) note that SET COVER
cannot be brought to the form of SET PARTITION. Apparently, they tacitly assume that the number of
variables and constraints should be preserved as was the case for T4 and T5; otherwise, if a (substantially)
larger number of variables and constraints is permitted, it is well known (see Section 3) that the so-called
decision problems underlying SET COVER and SET PARTITION can be transformed to each other (or
for that matter to any other so-called NP-complete decision problem). What is noteworthy here is that the
transformations SET COVER = SET PARTITION or SET PACKING can be achieved via SPLP. More
precisely, first T3 then T1 and T2 respectively:

Proposition 3. Number of Number of
var. constr., var. constr,

T6: SET COVER m n = SET PARTITION m+2mn n-+nm
T7. SET COVER m n = SET PACKING m-t+mn n+mn

Note that a data instance of SET COVER for which no feasible solution exists will correspond to an
unbounded objective function for any feasible solution to the instances of SET PARTITION and SET
PACKING as defined via SPLP by Proposition 3.

The following example illustrates all seven transformations:

Example 1. Let (m,n)=(3,4) and

3\ . 1 0 0 1
f={4], 4=40 1 1 o0}.
2 1 1 1 0

For this particular instance, let y° and yP denote optimal solutions to SET COVER and SET PARTITION
respectively. It is seen that y*=(1,0, 1), fy°=5,yP=(1, 1,0) and fyP=7.

To save space we shall only consider the transformations T1 and T2 as parts of T6 and T7 respectively.
The transformations are therefore presented in the order T3, T4, T5, T6 or T3 + Tl, T7 or T3+ T2.
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T3: SET COVER = SPLP: Let (x°,y ) be the optimal solution to the instance of SPLP defined by m, n, f,
¢, where ¢;;=0 if a;; = 1; otherwise, ¢;;: = o0:

' 0 o o 0
C=3e0 0 0 00 (-
0 0 0 0

Thus, y° = (1, 0, 1) =% x%, (or x3) = 1; x% = x% = x3; = 1 while all other x);= 0. Z,% ¢, x), + 3, 3’ =
=p"

T4: SET PARTITION = SET COVER: L>Z,f,=9; L:=10; AeL = (20, 20, 30); f+ AeL =(23,24,32).
Optimal solution y’ to SET COVER with data m, n, 4, f+ deL is y’=(1, 1, 0)=yP. We observe that
—Ln+(f+Ael)y' = —40+47=T=fyP.

T5: SET PARTITION = SET PACKING: For L= 10, the optimal solution y” to SET PACKING with
data m, n, A, —f+ AeL or m, n, 4, (17, 16, 28) is y” = (1, 1, 0) = yP. We note that —Ln + (—f+ AeL)y"
= —40+ (17, 16, 28)y" = —7 = —fy®.

T6 (T3+ T1): SET GOVER= SPLP=SET PARTITION: The instance of SPLP defined by T3 is
transformed to the instance of SET PARTITION shown below:

i L
- r-———-——--- ro-—————--= T——————== T--—-——-=--= T ==
e 11, @ , @ . | P 0
12| 1 | 1 | 1 1 =]
1 3 1 | 1 1 | 1 o
+ 1 4 ® ® ! 10
s 1Ty T T T r———=—=-—--= TrTT T T T-—————-- T
T ! o : s
X 4 2 3 1 1 1 1 1 v 0 [ G
2 4 1 1 | 1 1 [
3 1M r T T T 9
i e | So
. 303, ® | : | © 0
L 3 4| ll | | lI oo‘
[ v, ! : l | 0
* 1 2 ! @ I | 1 :
. 1 31 i (D | | ]
1 4! i P! I I
s 1! I 'y ‘ ! !
3 : A : :
s 2 3 | I 1 I I
2 4, I l L !
+ 3 1, I | y © i
3 2 1 | ] i [
3 31! 1 | | 1 1 :
-5 : : : ® o
[ | T~~~ ™7~ T - T - T T~ T -7~
1 : l1 1 1 ll | I 3
iy 2o [ RCERORNORRON 4k
3 ] 1 | 11 1 1 1 2
L e e e e - - - L e e e - - - L e e e - - — — 1 o e e e e - - A m——

T6 (T3+T1): SET COVER=SPLP=SET PARTITION

The circled entries correspond to the starred variables equal to 1 in the optimal solution and clearly
demonstrate that the solution found does in fact constitute a partition. The cost vector associated with the




J. Krarup, P.M. Pruzan / The simple plant location problem 47

m -+ 2mn =27 variables is shown in the extreme right-hand column. For the solution shown, note that
Zizjcijxij =2, fF+Efi=—4+9=5=H"

T7(T3+ T2): SET COVER = SPLP = SET PACKING: The same instance of SPLP is finally transformed
to an instance of SET PACKING with m +mn = 15 variables. For L> max {min,{f,+¢,;;}} =3 or, for
example, for L:=15, we obtain the instance of SET PACKING given below:

iJ
[ r- - - - - - -5 - - -==-- r-- - ---"-" 737" -=-—-—--=- b T

—
BN VURE S I

X4

>J —
ij L Cij

BN = W N e

oW

*
W= WW W DD

T7(T3+T2): SET COVER—SPLP=SET PACKING

For the solution shown, .2 (L —¢;;)x;; +Z,f7,—nL—2,f,=5X4+4—-5X4—-9=—-5=—fH° 0O

Extensive use of transformations T1-T3 have been made in various contexts. Examples include studies
of the SPLP-polytope discussed in Guignard and Spielberg (1977) and Guignard-Spielberg (1980), the
polynomial heuristics devised in Hochbaum (1979), and the investigations of facets of the SPLP-polytope
reported on in Cornugjols and Thizy (1980) and discussed in Section 12.

In addition to the transformations shown, it will be established in Section 11 that p-MEDIAN and
p-CENTER are transformable to SPLP such that the number of strategic y-variables is maintained.

3. The computational complexity of SPLP and related problems

According to Guignard and Spielberg (1977): “The SPLP is one of the simplest mixed integer problems
which exhibits all the typical combinatorial difficulties of mixed (0-1) programming and at the same time
has a structure that invites the application of various specialized techniques”, This statement indicates that
SPLP is a hard nut to crack, or, to use a more precise characterization, that it is highly unlikely that an
exact polynomial time bounded algorithm can ever be devised for its solution.

In the following, we will provide a series of characterizations of the four related integer programming
problems in terms of computational complexity, to demonstrate that they all indeed belong to the class of
combinatorial optimization problems termed NP-hard.

Since excellent textbooks and expository articles on the theory of NP-completeness are available, we
shall resort to intuitively appealing on definitions of the classes & and 9.9, sufficient for conveying our
main message: SPLP itself is termed NP-hard and the so-called decision problem related to SPLP is
NP-complete. Pertinent references include Garey and Johnson (1979) and the survey-type paper by Lenstra
and Rinnooy Kan (1979).

First a word about the distinction between polynomial and exponential time bounded algorithms. For
our purposes,” we can consider algorithms as step-by-step procedures for solving problems in a finite
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computing time for all data instances. For a given problem type (€. SPLP) and a set of data instances of a
given size corresponding to a given input length (e.g. SPLP (1, n)), the complexity function for an algorithm
expresses the largest amount of time required for solving the problem for an arbitrary data instance of that
size. An algorithm is called polynomial (time bounded) or good or fast if for all data instances its time
complexity function is bounded by some polynomial function of the input length; otherwise the algorithm
is called exponential. Since this definition involves ‘all data instances’, we can alternatively say that an
algorithm is either polynomial or exponential in the worst (most time consuming) case.

In contrast to optimization problems dealt with so far, a decision problem @ has only two possible
solutions, either the answer ‘yes’ or the answer ‘no’. As an example, a decision problem 7 (SPLP) related to
SPLP is: For a given instance ni, 1, C, fand a given threshold value k, does SPLP have a solution of value
at most k?

The formal theory of NP-completeness is based on the concept of deterministic and nondeterministic
Turing machines, designed to provide yes /no answers to decision problems posed in terms of language
recognition. For a given alphabet and language, an input consisting of a finite string of symbols from the
alphabet is accepted by the machine (i.e. solves the decision problem) if and only if it belongs to the
language. -

We will consider a string as a data instance and a language as a problem type or as the set of all its feasible
instances. A decision problem as to the feasibility of a data instance for a given problem type is said to
belong to the class & if feasibility or infeasibility of any data instance can be determined by some algorithm
in polynomial time on a digital computer, idealized to accept input of arbitrary length. Thus, #(SPLP) € @
if we for given m, n, C, f, k in polynomial time can either confirm or refute its membership of the set of all
feasible instances. Actually, it is not known whether 7(SPLP) in general belongs to & or not.

It does however belong to the (wider?) class 619 which can be characterized without reference to the
rather exotic concept of a nondeterministic Turing machine as follows: For a given instance y of a decision
problem (e.g. 7(SPLP) defined by m, n, C, f, k) its feasibility implies the existence of an appropriate
structure 8 associated with y (e.g. a binary vector of length m -+ mn whose elements correspond to the
assignment of values 0 or 1 to all variables y, x in (8)-(11)). If the length of & (the encoding of the desired
structure) is bounded by some polynomial in the length of y and if we for given (v, 8) can affirm the
feasibility of & (e.g. (8)-(11) are satisfied and the value of the objective function (7) does not exceed k) in
polynomial time on a digital computer, this decision problem is then said to belong to the class 9N &. This
may also be informally expressed within a framework of nondeterministic computation by stating that Ny
is-the class of all decision problems that can be solved by polynomial time, nondeterministic algorithms.

Evidently, #(SPLP) € 919 as asserted since both conditions for its membership are satisfied; the Single
Assignment Property ensures that & is of length m =+ mn and to verify its feasibility requires computations
of the order m -+ mn.

If for any data instance of a decision problem =’ we can construct in polynomial time a data instance of
a decision problem 7 such that the instance of =’ is feasible if and only if the instance of  is feasible, then
=’ is said to be polynomially transformable to = (notation: @’ 7). Thus, 7' oo implies that 7’ can be
viewed as a special case of « and, consequently, 7 is at least as difficult to solve as . If @' cc for all
' €99 then any problem belonging to the class 9 can be viewed as a special case of @ which is then
called NP-hard. Finally « is called NP-complete if @ is NP-hard and 7 €9U9. This definition of
NP-completeness does not provide an efficient basis for proving that a decision problem 7 is NP-complete.
However, it can be shown that if some @’ oo, o belongs to NP and «’ is NP-complete, then o is also
NP-complete. )

The Main Theorem in Karp (1972) asserts the NP-completeness of 21 decision problems including
a(SET COVER). If we for a given instance, m, n, 4, f, k of #(SET COVER) define an instance of SPLP as
shown earlier (Proposition 2, transformation T3) then the answer to 7#(SET COVER) will be positive if and
only if the answer to the question: “Does this instance of SPLP have a solution of value at most k7 is
positive. Since 7(SPLP) is in 6% and since the transformation 7(SET COVER) = 7(SPLP) is polynomial
(in this case linear) in mn then #(SPLP) is NP-complete.

Our primary concern in this paper is certain optimization problems and their computational tractability




J. Krarup, P.M. Pruzan / The simple plant location problem . 49

whereas the temporary interest in decision problems is due merely to the fact that key concepts like
NP-completeness and NP-hardness are only defined with respect to these. What remains in order to
characterize the computational complexity of SPLP itself is therefore to elaborate upon the connection
between a given optimization problem and some related decision problem. For a given minimization
problem OPT, the most direct way of deriving a related decision problem 7,(OPT) is to introduce a
threshold k and ask the question: “Does OPT have a feasible solution of value at most £?”. If #,(OPT) -
which for given OPT and given k is uniquely defined — possesses a certain property (e.g. NP-completeness)
and if this property is retained upon certain simplifications of 7,(OPT) then alternative decision problems
a,(OPT),... possessing that property can be formulated. Consider e.g. OPT = SET PARTITION. For a
given data instance m, n, A4, f, k, we have 7,(SET PARTITION): “Does there exist a y which is feasible for
SET PARTITION and satisfies fy<k?”. A simplification preserving the NP-completeness of «, is to
consider the unweighted case where all f; = 1: 7 (SET PARTITION): “Does there exist a y which is feasible
for SET PARTITION and which satisfies Z,y, <k?”. This decision problem can be shown to remain
NP-complete even if we drop the threshold: «,(SET PARTITION): “Does there exist a feasible y?”.

In order to characterize the computational complexity of optimization problems, a 7(OPT) related to a
given OPT is usually chosen as the most simplified version, simplified in the sense that its complexity
remains unaltered, as exemplified by 7,(SET PARTITION) above. Note that a simplification similar to
that from 7, to m, such that the decision problem remains NP-complete does not apply for #(SET
COVER), #(SET PACKING) and #(SPLP). With k disregarded the answer ‘yes’ or ‘no’ as to the feasibility
of a data instance for these decision problems can be provided in polynomial time.

For any instance of a decision problem 7 €% answers can be provided to both the question “is this
instance feasible” and the complementary question “is this instance infeasible”. However, for 7 ENP, a
similar symmetry between a problem and its complement is not known to exist since in general for a given
instance only the feasibility of an associated structure can be affirmed in polynomial time. Actually no
complement of any NP-complete problem (e.g. for a given instance m, n, C, f, k of «(SPLP): “Is it true that
no feasible solution is of value at most k"”) is known to belong to N 9.

An instance of a given OPT cannot in general be optimally solved in polynomml time by solving a
sequence of some related w(OPT) for varying thresholds. The assertion is true in general even for an
optimization problem OPT whose corresponding decision problem #z(OPT) €. Though the infeasibility
as well, as the feasibility of an instance of #(OPT) can be determined in polynomial time, the number of
such instances to be solved will not in general be bounded by some polynomial in the length of the input.
Furthermore, since ¢ C NP, the assertion holds true for 7(OPT) € NP\ as well be it empty or not.
Consequently, membership of 99 for some 7(OPT) does not necessarily imply that OPT itself, viewed as a
sequence of decision problems, belong to 9.

We are thus unable formally to prove, say, that SPLP is NP-complete or NP-hard, whereas the following
argument provides at least a reasonable characterization of its computational complexity. Evidently while
the converse is not true, optimal solution of some OPT will solve a related decision problem #(OPT) as
well. Furthermore, if OPT is solvable in polynomial time then so is #(OPT), and if #(OPT) in addition is
known to be NP-hard, then any decision problem in 9% is solvable in polynomial time and ¥ = 9.
Since NP-hardness is defined only with respect to decision problems, then the corresponding optimization
problems can be called NP-hard in the sense that the existence of polynomial algorithms for their solution
would imply & = 9L,

Although #(SET PACKING) has not been explicitly stated, it is easily verified via the polynomial
transformations shown that the discussion on complexity can be summarized as

Proposition 4.

7(SET COVER) cc w(SPLP).

7#(SPLP) < 7w(SET PARTITION).

7(SPLP) x w(SET PACKING).

7(SET COVER) is NP-complete= w(SPLP), w(SET PARTITION) and = (SET PACKING) are all
NP-complete.

The four corresponding optimization problems are called NP-hard.
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Although the theory of computational complexity has provided useful complexity measures of decision
problems via the definition of classes ¥ and Y followed up by concepts like NP-completeness and
NP-hardness, the fact that some NP-hard optimization problems in practice (i.e. not in the ‘worst-case’
situations underlying complexity analysis) are computationally more demanding than others is still a
constant source of dissatisfaction. There is thus a strong need for further refinements of complexity
measures.

4. Exact and approximate algorithms: A brief discourse

For a given data dependent set S of feasible solutions to an optimization (minimization) problem and a
given, real-valued, data dependent function g(x), we shall initially classify algorithms for finding either
29=g(x% = min{g(x)| x € S} or some ‘reasonable’ solution x'.

For a given problem type and for all data instances, assume that the algorithm terminates after a finite
computing time with a solution x’ and the corresponding value z’ = g(x’) of the objective function. If
x' €S and g(x’) = z°, the algorithm is called exact; otherwise, it is approximate. If x’ €5’ D S and 2’ <:z°,
some of the constraints are relaxed and x’ need not be feasible with respect to the original set S. In this
case the approximation algorithm is said to solve a relaxation of the original problem. Note that although
the word ‘relaxation’ refers to the reduced constraint set, some authors find it practical to use ‘relaxation’ as

- synonymous with an approximation algorithm which provides solutions possessing the above properties.
Finally, if x’ € S and z’ = 29, the approximation algorithm is a heuristic. A heuristic is thus an algorithm
producing feasible solutions for all data instances without guaranteeing optimality.

It is practical and commonly accepted to characterize algorithms by a measure related to their time
complexity function. For a specific problem type OPT and a specific algorithm A, the time complexity
function f(n) will, as mentioned in Section 3, express the largest amount of time required for solving any
instance of length n. To characterize the order of f(n), we say that f(n) is O(g(n)) whenever some constant
a exists such that | f(n)] < a|g(n)| for all nonnegative n. We then refer to the algorithm A4 as an O(g(n))
algorithm for OPT. To exemplify this notation, for some OPT, A4 and for any positive n, let e.g.
f(n)="Tn*+3n*+logn. For g(n)=n*, | f(n)| < 10|g(n)|, hence, 4 is an O(»*) algorithm for OPT.

For OPT = SPLP, a ‘data instance of length n’ has no obvious meaning since a data instance m, n, C, f
consists (at most) of 1+ 1+ mn+ m numbers. We can however introduce ¢ = max{m,n} whereby the
length of any data instance will be at most a polynomial of second order in ¢. Since the product of two
polynomials again is a polynomial, any algorithm which is O( p(#)) for some polynomial p of ¢ = max{m, n}
is also polynomial time bounded for SPLP(m, n). This corresponds to characterizations of (approximate)
algorithms for TRAVELING SALESMAN like ‘an O(rn?) algorithm’ where n traditionally refers to the
number of cities and not to the length of a data instance which is of the order n? (n itself plus an nXn
matrix of intercity distances).

As to algorithms devised since the mid 60’s for SPLP, the inventiveness has been great. A wide selection
of different mathematical programming techniques have with varying degrees of success been tailored for
SPLP, and numerous computer codes have been written, implemented, tested, compared, and reported on
in the literature. In addition to more or less sophisticated approximation algorithms, we have found exact
methods based on cutting planes, dynamic programming, pseudo-boolean programming plus a long list of
other enumerative approaches with a combination of LP-relaxation and branch-and-bound as the most
successful recorded to data. .

Like earlier approaches for other hard combinatorial optimization problems, it is only natural to expect
the first methodologies for solving SPLP to be built on heuristics. At a time when more advanced tools
were not yet developed to a satisfactory level, most O.R. practitioners were compelled to resort to heuristics
in the hope that a sound philosophy behind such an approach would lead to a reasonably good result. The
decision-maker’s acceptance of the solution presented to her was often (and still is) regarded as an
adequate quality measure, or possibly the only one within reach.

The selected samples to be considered in the sequel are all outdated in the sense that they are
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outperformed (with respect to quality of solutions, computational requirements and the size of data
instances amenable to solution) by more recent techniques. Nevertheless, these ‘ancient’ heuristics should
not be totally neglected. Besides representing landmarks on the road from past to present, there seems to be
a permanent need for heuristics either to achieve computational economy or to approach problems
characterized by incomplete data or by a dimension beyond the capability of existing exact algorithms.

It has not always been fashionable for academics to devote time to analyses of the quick and dirty
methods characterizing ‘much practical O.R. work, apparently because of their often postulated lack of
mathematical elegance. However, with the advent of recent results of analyses of approximate algorithms,
this attitude has completely changed. Judging from the latest contributions to the theory of combinatorial
optimization, hardly any other subject appears to attract more attention than studies of worst-case and
average-case performance of heuristics and relaxations.

While the following section will deal only with heuristics without providing such analyses, an account of
preliminary results for SPLP-related algorithms is given in Section 10.

5. Early heuristics (1963-66)

One of the earliest methods proposed for SPLP is the now well-known heuristic due to Kuehn and
Hamburger (1963). It has been widely studied and its catalytic effect can hardly be overrated. Although a
far more comprehensive model (involving plants, intermediate warehouses, clients, several commodities,
plant- and warehouse capacities, and allowing a very complex cost structure including a cost term for
delays in delivery) is formulated, the 12 sample problems studied are all essentially reduced to SPLP
(24,50). The heuristic consists of two parts. The main program is an ‘add routine’ whereby facilities are
located one by one (corresponding to the greatest cost reduction) until no facility can be added without
increasing total cost. The underlying hypothesis is that the optimal solution for ( p + 1) facilities can be
determined from the optimal solution for p facilities by adding an additional facility to the existing
solution. In a modern terminology, such a scheme would be called greedy because of its appetite for
maximum improvement at each step. Upon termination of the main program, a so-called bump and shift
routine is entered. It first eliminates (bumps) any facility which is now uneconomical because of the
proximity of another facility located subsequently. It also considers relocating (shifting) each facility from
its actual location to other potential locations in its neighborhood. However, the improvements by the
bump and shift routine never exceed 0.5 per cent for the 12 problems examined, thus lending support to the
principles on which the main program is based. The computing time required for the 12 sample problems
totals 72 minutes (IBM-650) and is reduced to one hour with a different version of the bump and shift
routine. We will occasionally cite computing times due to their historical interest even though it is
impossible to meaningfully compare times for different data instances run on different computers.

Manne (1964) provides a Steepest Ascent One Point Move Algorithm (SAOPMA) for SPLP, a heuristic
proposed by Reiter and Sherman (1962) for a more general class of combinatorial optimization problems.
SAOPMA is a greedy improvement heuristic, initiated with a feasible solution (in terms of the y,’s) which
can be any of the 2™ lattice points of the unit hypercube excluding (0, 0,...,0). It proceeds by moving to
one of the m adjacent lattice points by replacing one of the y,’s with its complement, selected so as to give
the greatest decrease in total cost thereby permitting both the addition of a new facility or the deletion of
an existing facility. SAOPMA terminates with a suboptimal solution when movement to any adjacent
lattice point will not result in a lower value of the objective function.

As pointed out by Feldman et al. (1966), the SPLP-formulation is inadequate for those problems where
the economies-of-scale affect facility costs over the entire range of facility sizes. In SPLP the concave
objective function is a result of the fixed costs only; consequently, a more general model is proposed:

min{z 2esit 2f(s)) =2y Ds;=by,allj, 5,>0, alli,j}
i i j i

where f(s;) is continuous and concave over the range of interest.
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Should facilities be added or dropped? The KH-heuristic (Kuehn and Hamburger) is based on
sequential addition of facilities, assuming that the best p facilities in general will be a subset of the best
p + 1. They note however that facilities might be eliminated (dropped) rather than added, i.e. facilities are
in operation in every potential location in the first feasible solution and then eliminated one by one, guided
by cost savings. Based on the Single Assignment Property which is easily verified to apply for problems
with any concave facility costs, Feldman et al. modify the KH-heuristic by incorporating a ‘drop-routine’.
Their computational results on the KH sample problems show that the running time for each instance is
reduced to under one minute (IBM-7094) and that no solution obtained has a higher cost than that
observed by Kuehn and Hamburger. Note that SAOPMA considered above consists of both add and drop
procedures, where an add or a drop can be performed at any step; in practice it usually performs like either
an add or a drop procedure, dependent only on the choice of initial solution. In Jacobsen (1977) the three
greedy one-point-move construction heuristics so far discussed are related to the dual-based and Lagrangean
relaxation approaches considered in Section 8.

Another effort on the heuristic frontier is that of Bergendahl (1966). Since local minima can occur in
nonconvex minimization, LP-techniques and the like (e.g. separable programming) can be expected to
result in far-from-optimal local minima. Small-scale SPLP’s due to Manne (1964) are resolved by separable
programming, confirming this expectation. A modification called Marginal Cost Parametrization of the
standard separable programming technique is therefore proposed, leading to better solutions to the sample
problems than those obtained by Manne. However, the computing time is excessive even for problems of a
very moderate size (complete enumeration is faster) so, in spite of the acceptable solutions found, separable
programming-like techniques for SPLP and related problems cannot be recommended.

Apart from the separable programming heuristic, the three others will be revisited in Section 10, where
the worst-case behaviour of several approximate algorithms is studied.

6. LP-relaxations of SPLP

LP-relaxations of SPLP have considerable interest as they provide the basis both for various approxima-
tion algorithms and for the determination of bounds for the most successful integer linear programming
algorithms for SPLP (and for integer programming in general) based upon branch and bound type
procedures. The following exposition characterizes such relaxations with respect to the quality of solutions
and computational requirements.

As was mentioned in Section 1 in connection with the formulation of SPLP (7)-(11), alternative ways of
linking the fixed costs to facilities with positive outflow are either the strong (disaggregated) constraints
(9a) or the weak (aggregated) form (9b). Similarly, two alternative linear programming relaxations, SRS
(Strong Relaxation of SPLP) and WRS (Weak Relaxation of SPLP) respectively, will be considered:

Strong and weak LP-relaxations of SPLP: SRS and WRS
Strong (SRS)  Weak (WRS)  both

mn inequalities  m inequalities min Y, D¢, Xt DAY
i i
Yi—x;;=0 'Iiyi—zxij>0 Exijzl
J i

(disaggregated) (aggregated) Yi=0,x,,=0

All slack variables for the tighter constraints y, — x;; = 0 are upwards bounded by + 1 while a slack variable
corresponding to one of the aggregated inequalities in the more loosely constrained formulation can attain
any nonnegative value less than n,, the number of clients which can be supplied from the ith facility. For
n;=n, each aggregated constraint is simply the sum of n disaggregated constraints. A feasible solution to
SRS will therefore be feasible for WRS as well while the converse is generally not true. Thus, the adjectives
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‘strong’ and ‘weak’ have the intuitive meaning that SRS with disaggregated constraints is stronger (closer to
the underlying SPLP) than the weaker (less tight) form WRS. On the other hand, SRS has n(m+1)
constraints and m(2n+ 1) variables including slack while these figures reduce to m+n and m(n+2)
respectively for WRS.

Disregarding other features such as how to select the next node in the search tree from which to branch,
a successful branch and bound algorithm is a lucky compromise between the quality of the bounds and the
computational effort involved in their evaluation. For designers of branch and bound algorithms for SPLP,
the schism at this stage is essentially reduced to a choice between WRS and SRS (or their duals): WRS with
significantly fewer constraints will in general require less computational effort in each bound evaluation
while SRS in general will produce tighter bounds. Since either of the two linear programs will have to be
solved repeatedly, the substantial difference in the number of constraints led most early researchers to
exploit WRS. The remainder of the paper however bears considerable evidence of the prudence of choice of
SRS.

6.1. Optimum integral solutions to SRS

It is not true that an optimal solution to SRS automatically will be integral and thus solve SPLP itself.
Balinski (1965) noted however that “it might be conjectured” but quoted the following counterexample
suggested by Gomory:

Example 2. An SPLP (3,3) is defined by

1 2 1 1
=i}, C=41 2 1¢.
1 I 1 2

Minimum cost for establishing any subset of at most two facilities is 5 while a minimum cost of 6 is
incurred for a establishing all three facilities. An optimal fractional and unique solution (x’,y’) to SRS is

r—1

yi=3,alli, x;;= 1, i#j and x;; =0, all i, for which the objective function of SRS attains the value 2. 0O

Is it possible to construct an instance of SPLP(m, n) such that min{m, n} is less than 3 and such that the
corresponding SRS has an optimal fractional solution better than any discrete? The following proposition
settles the question in the negative

Proposition 5. For any SPLP with min{m,n} <3 there exists an optimal solution in integers to the strong
LP-relaxation SRS.

Proof. The proposition is trivially true for min{n1,n} <2,

m>2, n=2: For the constraints of SRS written in the form Ax — b, it suffices to prove that A is totally
unimodular i.e. that every square, nonsingular submatrix of 4 has a determinant equal to *=1. Upon
addition of slack variables s;; to the disaggregated constraints, the coefficient matrix of SRS is

g Tt Yom Xn X12 T Xmi Xm2 S et Sim2 Rl R2
1 1 . *

1 1 *
1 —1 -1 *

1 —1 —1 *
1 —1 —1 *

1 —1 —1 *
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Every column contains at most two nonzero entries and every entry is 0, +1, — 1. The rows have been
* partitioned into two sets R, and R, (members of these sets alternate in the actual case as shown) such that
the two nonzero entries in a column with the same sign (here the y-columns) do not appear in the same set
R; of rows. Finally, the two nonzero entries in a column with different signs (here the x-columns) belong to
the same set R; of rows. These are the sufficient conditions due to Heller and Tompkins (1956) for
establishing the total unimodularity of the matrix.

m =2, n>2: In this case the matrix reads:

B4 21 Xn o X Xy Tt Xaa | S Tt S,
1 1
1 1
1 -1 —1
1 -1
1 - -1
1 —1 -1

or

By an argument similar to the one used in the previous case, BT is totally unimodular. It is then easily
verified (for details, see e.g. Garfinkel and Nemhauser (1972)) that the same applies for A7 and hence for 4
itself. 0O

Besides defining a class of SPLP’s which is optimally solvable by solving the corresponding instances of
SRS, Proposition 5 asserts that no smaller (in terms of mn) counterexample than Gomory’s SPLP (3,3)
exists.

Nevertheless, counterexamples or not, Balinski’s conjecture is almost correct. Though vaguely for-

mulated and only supported by empirical evidence, we state it formally to emphasize its indebatable
significance:

Conclusion

Since all f; are assumed nonnegative, any optimal solution (x’, y’) to SRS will satisfy y/ = max ;x;;, all i.
If any client’s entire demand is supplied by the ith facility, then some x;; will equal 1 and so will /. Since
an SRS related to an instance of SPLP generated at random or with ‘real-world’ data most often posssesses
the Single Assignment Property, split assignments (where clients are served by two or more facilities) will
seldomly occur and an optimum solution in integers to SRS results. As will be elaborated upon in Sections
7 and 8, several designers of branch and bound codes for SPLP based on SRS or its dual have noted this

fact and realized that in the vast majority of cases no branching at all is required upon the initial solution
of SRS.



