
Towards an Elastic and Autonomic Multitenant Database

Aaron J. Elmore Sudipto Das Divyakant Agrawal Amr El Abbadi
Department of Computer Science, UC Santa Barbara, CA, USA

{aelmore, sudipto, agrawal, amr}@cs.ucsb.edu

ABSTRACT

The success of cloud computing as a platform for deploying web-
applications has led to a deluge of applications characterized by
small data footprints with unpredictable access patterns. A scal-
able multitenant database management system (DBMS) is there-
fore an important component of the software stack for platforms
supporting these applications. Elastic load balancing and efficient
database migration techniques are key requirements for effective
resource utilization and operational cost minimization. Our vision
is a DBMS where multitenancy is viewed as virtualization in the
database layer, and elasticity is a first class notion with the same
stature as scalability, availability etc. We analyze the various mod-
els of database multitenancy, formalize the forms of migration, and
identify the design space and research goals for an autonomic and
elastic multitenant database.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational databases,

Transaction processing; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems

General Terms

Design

Keywords

Cloud computing, multitenancy, elastic data management, database
migration, shared nothing architectures

1. INTRODUCTION
Elasticity, pay-per-use, low upfront investment, low time to mar-

ket, and transfer of risks are some of the enabling features that make
cloud computing a ubiquitous paradigm for deploying novel appli-
cations which were not economically feasible in a traditional enter-
prise infrastructure settings. This transformation has resulted in an

∗This work is partly funded by NSF grants III 1018637 and CNS
1053594, and NEC Labs America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetDB’11, June 12, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0652-2/11/06 ...$10.00.

unforeseen surge in the number of applications being deployed in
the cloud. For instance, the Facebook platform1 has more than a
million developers and more than 500K active applications [14].

In addition to the sheer scale of the number of applications de-
ployed, these applications are characterized by high variance in
popularity, small data footprints, unpredictable load characteristics,
flash crowds, and varying resource requirements. As a result, PaaS
providers, such as Joyent [17] or Google App Engine [1], hosting
these applications face unprecedented challenges in serving this
emerging class of applications and managing their data. Sharing
the underlying data management infrastructure amongst a pool of
tenants, or databases, is thus essential for efficient use of resources
and low cost of operations.

The concept of a multitenant database has been predominantly
used in the context of Software as a Service (SaaS). The Sales-
force.com model [22] is often cited as a canonical example of this
service paradigm. However, it is also interesting to study the vari-
ous other models of multitenancy in the database tier [16, 19] and
their interplay with resource sharing in the various cloud paradigms
(IaaS, PaaS, and SaaS). A thorough understanding of these mod-
els of multitenancy is crucial for designing effective database man-
agement system (DBMS)2 targeting different application domains.
Moreover, irrespective of the multitenancy model or the cloud para-
digm, autonomic management of large installations supporting thou-

sands of tenants, tolerating failures, dynamic sharding of databases,
with elastic load balancing for effective resource utilization and
cost optimization are some of the major challenges for multitenant
databases for the cloud.

Many large enterprises, in addition to public cloud providers, of-
ten host a vast number of databases to serve a variety of disjoint
projects or teams. These enterprises can leverage a multitenant
cloud platform to consolidate the number of servers dedicated to
database hosting. Curino et al. demonstrated, with the consolida-
tion engine Kairos, that the number of database nodes can be con-
solidated by a factor between 5.5:1 and 17:1 [9]. Large multitenant
databases are therefore an integral part of the infrastructure to serve
such large number of small applications [19, 22, 23].

Our vision is to develop an architecture of a multitenant DBMS
that is scalable, fault-tolerant, elastic, autonomic, consistent, and
supports a relational data model. We report on work in progress in
designing such a system targeted to serve a large number of small
applications typically encountered in a DBMS for a PaaS paradigm
or enterprise environment. In this paper, we concentrate on the
system level issues related to enabling a multitenant DBMS for

a broader class of systems. We specifically focus on elastic load
balancing which ensures high resource utilization and lowers oper-
ational costs, live migration of a database as a primitive for elas-
ticity, and generating synthetic tenant loads to provide testing and
simulation.

We view multitenancy as analogous to virtualization in the data-
base tier for sharing the DBMS resources. Similar to virtual ma-
chine (VM) migration [7], efficient database migration in multi-
tenant databases is an integral component to provide elastic load
balancing. Furthermore, considering the scale of the system and
the need to minimize the operational cost, the system should be
autonomous in dealing with failures and varying load conditions.
Migration should therefore be a first class notion in the system hav-
ing the same stature as scalability, consistency, fault-tolerance, and
functionality. This paper serves as step in this direction of building
a rich autonomic, elastic, multitenant database. Following are our
contributions:

• We categorize the forms of migration, identify metrics for
comparing migration forms, discuss off-the-shelf migration
techniques and recent work in database live migration.

• We survey and analyze the various multitenancy models in
the database tier [16,19] and extend this classification to map
to the IaaS, PaaS, and SaaS paradigms.

• We explore our preliminary design in building an autonomic
controller for a multitenant database that controls tenant place-
ment and load balancing.

Organization: Section 2 surveys multitenancy models and the chal-
lenges associated with each model in enabling elasticity. Section 3
discusses various forms of migration and their associated costs.
Section 4 discusses initial work in building a self-managing, elastic,
and multitenant database system. Section 5 concludes the paper.

2. DATABASE MULTITENANCY
We now analyze the various database multitenancy models and

relate them to the different cloud paradigms to determine the trade-
offs in supporting multitenancy.

2.1 Multitenancy Models
Multitenancy in databases has been prevalent for hosting mul-

tiple tenants within a single DBMS while enabling effective re-
source sharing [2, 16, 19]. Sharing of resources at different levels
of abstraction and distinct isolation levels results in various multi-
tenancy models. The three models explored in the past [16] consist
of: shared machine (also referred to as shared hardware), shared

process, and shared table. SaaS providers like Salesforce.com [22]
are a common use cases for database multitenancy, and tradition-
ally rely on the shared table model. The shared process model has
been recently proposed in a number of database systems for the
cloud, such as RelationalCloud [8], SQLAzure [4], ElasTraS [10].
Nevertheless, some features of cloud computing increases the rel-
evance of the other models. Soror et al. [21] propose using the
shared machine model to improve resource utilization. To improve
understanding of multitenancy, we use the classification recently
proposed by Reinwald [19] which uses a finer sub-division (see
Table 1). Though some of these models can collapse to the more
traditional models of multitenancy. However, the different isolation
levels between tenants provided by these models make this classi-
fication interesting and helpful for selecting a target classification
when building a multitenant database.

Sharing Mode Isolation IaaS PaaS SaaS

1. Shared hardware VM X X

2. Shared VM OS User X

3. Shared OS DB Instance X

4. Shared instance Database X

5. Shared database Schema X

6. Shared table Row X X

Table 1: Multitenant database models, how tenants are iso-

lated, and the corresponding cloud computing paradigms.

Shared Hardware

The models corresponding to rows 1–3 share resources at the level
of the same machine with different levels of abstractions, i.e., shar-
ing resources at the machine level using multiple VMs (VM Isola-
tion) or sharing the VM by using different user accounts or different
database installations (OS and DB Instance isolation). There is no
database resource sharing. Rows 1–3 only share the machine re-
sources and thus correspond to the shared machine model in the
traditional classification. While these models offer strong isolation
between tenants, these models come with a cost of increased over-
head due to redundant components and a lack of coordination using
limited machine resources in an unoptimized way. The lack of co-
ordination is prominent in the case of using a virtual machine for
each tenant, row 1, where each tenant behaves as if it has exclusive
disk access [8].

Shared Process

Rows 4–5 involve sharing the database process at various isolation
levels—from sharing only the installation binary (database isola-
tion), to sharing the database resources such as the logging infras-
tructure, the buffer pool, etc. (schema isolation), to sharing the
same schema and tables (table row level isolation). How a database
instance can be isolated between tenants varies between implemen-
tation. For example, with MySQL each tenant can be given their
own schema with limited user permissions. Rows 4–5 thus span
the traditional classes of shared process (for rows 4 and 5).3 Ad-
vantages of the shared process model are discussed in section 4.

Shared Table

The shared table model uses a design which allows for extensible
data models to be defined by a tenant with the actual data stored
in single shared table. The design often utilizes ‘pivot tables’ to
provide rich database functionality such as indexing and joins [2].
While this model offers advantages of maintaining a single database
instance, isolating tenants for migration becomes difficult due to
shared locking mechanisms. The reliance on consolidated pivot
and heap tables could lead to poor performance due to all tenants
sharing index structures. Additionally, the shared table model re-
quires that all tenants reside on the same database engine and re-
lease (version). This limits specialized database functionality, such
spatial or object based, and requires that all tenants use limited
subset of functionality. This model is ideal when tenant data re-
quirements follow similar structures or patterns, such as in the case
of Force.com offering customizations on a customer relationship
database [22].

3The shared instance model is primarily supported by commer-
cial databases that allows multiple databases (processes) to share a
common installation (or binary). Example usage includes running
isolated production and test databases. This model can map to both
shared machine as well as shared process.

With different forms of multitenancy, components that constitute
a tenant vary. We henceforth use the term cell to represent all infor-
mation necessary to serve a tenant. A multitenant database instance
consists of thousands of cells, and the actual physical interpretation
of a cell depends on the multitenancy model.

DEFINITION 1. A cell is the self-contained granule represent-

ing a tenant in the database.

At one extreme is the shared hardware model which uses vir-
tualization to multiplex multiple VMs on the same machine with
strong isolation. Each VM has only a single database process with
the database of a single tenant. At the other extreme is the shared

table model which stores multiple tenants’ data on shared tables
with the finest level of isolation. In the different models, tenants’
data is stored in various forms. For shared machine, an entire VM
corresponds to a tenant, while for shared table, a set of rows in a
table correspond to a tenant. Thus, the association of a tenant to
a database can be more than just the data for the client, and can
include metadata or even the execution state. As the level of iso-
lation moves away from shared hardware (row 1), the difficulty of
cell migration increases; this is due to an increase in shared compo-
nents, such as transaction managers, buffer pools, etc, which need
to have a cell partitioned, or isolated, in order to migrate tenant
without interrupting co-located tenants. With this understanding of
the models and the abstraction corresponding to tenants, we now
delve into analyzing the interplay of the different forms of multite-
nancy and the cloud paradigms.

2.2 Multitenancy for the Cloud
While broad in concept, three main paradigms have emerged for

cloud computing: IaaS, PaaS, and SaaS. We now establish the con-
nection between the database multitenancy models with the cloud
computing paradigms (Table 1 summarizes this relationship), while
analyzing the suitability of the models for various multitenancy
scenarios.

IaaS provides the lowest level of abstraction such as raw com-
putation, storage, and networking. Supporting multitenancy in the
IaaS layer thus allows much flexibility and different schema for
sharing. The shared hardware model is therefor best suited in IaaS.
A simple multi-tenant system could be built of a cluster of high end
commodity machines, each with a small set of virtual machines.
Each virtual machine would host a single database tenants. This
model provides isolation, security, and efficient migration for the
client databases with an acceptable overhead, and is suitable for
applications with lower throughput but larger storage requirements.

PaaS providers, on the other hand, provide a higher level of ab-
straction to the tenants. There exist a wide class of PaaS providers,
and a single multitenant database model cannot be a blanket choice.
For PaaS systems that provide a single data store API, a shared ta-

ble or shared instance could meet data needs for the platform. For
instance, Google App Engine uses the shared table model for its
data store referred to as MegaStore [3]. However, PaaS systems
with the flexibility to support to a variety of data stores, such as
AppScale [6], can leverage any multitenant database model.

SaaS has the highest level of abstraction in which a client uses
the service to perform a limited and focused task. Customization
is typically superficial and workflows or data models are primar-
ily dictated by the service provider. With rigid definitions of data
and processes, and restricted access to a data layer through a web
service or browser, the service provider has control over how the
tenants will interact with a data store. The shared table model has
thus been successfully used by various SaaS providers [2, 16, 22].

2.3 Elastic and Autonomic Databases
Techniques, or tools, not traditionally found in databases are re-

quired to achieve elasticity in a multitenant system. Since tenants
are sensitive to the behavior of co-located tenants and usage pat-
terns evolve over time, load balancing tenants is a critical operation.
Tenant migration is required to evenly balance load across nodes.
With the ability to rebalance tenants, a database must also be able to
decide which tenants to migrate and when to migrate. A coordinat-
ing process within the system must monitor tenant usage, analyze
behavior, and trigger rebalancing when needed. Therefore, a ten-
ant migration mechanism and an autonomic controller are essential
features for an elastic multitenant database system; the following
two sections discuss the research challenges that arise in building
the two components for multitenant databases.

3. FORMS OF DATABASE MIGRATION
The unpredictable usage patterns for the tenants in a multitenant

DBMS mandate the need for elasticity. Migration is a key compo-
nent for elasticity and load balancing, and hence, migration should
be supported as a first class notion in any multitenant DBMS. We
now classify forms of migration and identify state-of-the-art migra-
tion techniques. With this understanding we propose a classifica-
tion of migration techniques along with a set of metrics to compare
the proposed forms.

Downtime is the time a cell may be unavailable during migra-
tion. Interruption of service is the number of in-flight transactions
of a tenant that fail during migration due to loss of transaction state,
or not meeting the transactional requirements. Required coordina-

tion refers to the extent of coordination needed to initiate as well as
complete the migration. Note that in a distributed autonomic sys-
tem, a component within the DBMS should coordinate migration,
i.e. determine when to migrate as well as the source and destina-
tion machines, and cells to migrate. The overhead in the system
can be separated into: operation overhead which is the overhead
on the DBMS during normal operation that might be incurred to
make the system amenable to migration; and migration overhead

which is the system overhead during migration. The abstract form
definitions below identify the goals of migration and are indepen-
dent of any multitenancy model. Table 2 summarizes these forms
of migrations and compares their relative costs.

3.1 Asynchronous migration
Asynchronous migration is an immediate, blocking4 migration

which relies on a coordinating process to copy the cell from a
source host to a destination host. The blocking stems from dis-
abling the source during the copy to ensure consistency, resulting in
a period of downtime. This migration is immediate due to a prompt
migration upon initiation. A naive implementation is to stop the
database process and copy the database between nodes. Copying
can be performed by either a file copy or via a backup and restore
process. To minimize impact a database could be flushed and set
to read only to allow for some operations during migration. A stale
replica (maintained by lazy replication) can be leveraged for migra-
tion; here a coordinator process disables the source to replay final
updates at the destination. Once the migration has completed, the
coordinator will redirect traffic to the destination. As the coordi-
nator has more control over the migration initialization, this form
works well for large cells with regular periods of inactivity.

4Blocking and non-blocking migration refers to potential blocking
of client database calls, and not the internal implementation used to
achieve the migration.

Form of Downtime Interruption External Operation Migration

Migration of Service Coordination Overhead Overhead

Asynchronous Moderate Moderate High None High
Synchronous Minimal Minimal Moderate Moderate Moderate
Live None Minimal Minimal None Minimal

Table 2: Summary of the forms of migration and the associated costs.

3.2 Synchronous migration
Synchronous migration is an eventual, non-blocking4 migration

where a source and destination operate as a tightly coupled cluster.
This requires the destination to act as an eager replica of the source,
where updates must synchronously occur at the source and destina-
tion. If the destination host does not have an up to date replica
of the cell, the source and destination hosts are configured to run
as a synchronized cluster, and the destination gradually acquires
a synchronized state by replaying writes that were performed on
the source DBMS. Once a stable state is reached, the coordinat-
ing process notifies the source host to stop serving the cell, and
all future connections are sent to the destination host. Many pop-
ular RBDMSs have the ability to run in a master-slave mode in
order to efficiently replicate data across hosts in a cluster. Syn-

chronous migration can be achieved using a method proposed by
Yang et al. [23] which uses two-phase commit and a read one/write
all master-slave mode. Even though many DBMSs support a clus-
tered mode off the shelf, changing a lazy replication to a synchro-
nized, or eager replication, often requires short periods of down-
time to change server states. Synchronous migration is eventual
due to the synchronization period required to complete migration.
A minimal amount of downtime and interruption of service may
occur while switching the primary master to the destination. The
minimal operational overhead originates from the hosts needing to
run in a mode which is ready for clustering. The coordinator is re-
sponsible for redirecting client connections to the destination host
for cells.

3.3 Live migration
Live migration is an immediate, non-blocking4 migration of a

cell from a source host directly to a destination host with no down-

time and minimal interruption of service. All client connections
are migrated without the need to reconnect. To initiate migration,
a coordinating process simply notifies the source host of the des-
tination and relies on the live migration process to independently
manage itself.

Several existing techniques can be utilized for database migra-
tion. VM migration has been thoroughly researched and provides
an effective means for live migration of a VM without interrupting
processes [5,7,18]. If virtual machines are used for tenant isolation,
live virtual machine migration can be leveraged for quick database
migration with minimal interruption of service. We were able to
migrate a running 1 GB TPC-C in less than 20 seconds on average,
with only a 5-10% increase of response time due to the VM over-
head. However, this ease of migration and tenant isolation comes
at a cost of increased overhead and limited consolidation due to
duplicated OS and DB processes [9]. To allow more tenants to be
consolidated at a single node, multiple cells must share the same
database process and VM. In this case, VM migration does not al-
low fine-grained load balancing of cells, and all cells contained in
a VM must then be migrated together.

Recent research has explored implementing live database migra-
tion cognizant of the semantics of the database process. We have

proposed Zephyr [12], a technique to migrate a cell in a shared

nothing database architecture with no downtime. Zephyr uses a
synchronized dual mode where both the source and the destina-
tion nodes concurrently execute transactions on the cell; the source
completes execution of the transactions that were active at the start
of migration, while the destination executes new transactions. As
the first step of migration, Zephyr copies a wireframe of the database
to the destination node. This wireframe consists of the minimal in-
formation needed for the destination to start executing transactions
but does not include the actual application data stored in the cell.
The wireframe includes database metadata to authenticate new con-
nections and meta information about the tables and indices. For
a database using B+-trees, the wireframe includes only the inter-
nal nodes of the tree; the leaf nodes containing the actual data is
replaced by sentinels at the destination. Zephyr does not allow
structural changes to the indices during migration. Once resources
for the cell has been initiated, the destination starts executing new
transactions while the source continues executing transactions that
were active at the start of migration. Pages are pulled by the desti-
nation as transactions at the destination access them. Transactions
may be aborted at the source when they access a page that has al-
ready been migrated and at both nodes when they result in change
structural changes to the indices. Once transactions at the source
complete, migration completes by pushing pages to the destination.

We have also proposed Albatross [11], a technique to migrate
a cell in shared storage architectures with no aborted transactions
and minimal performance impact. In a shared storage architecture,
the persistent image of a cell is stored in a network addressable
storage abstraction and hence does not need migration. Albatross
focusses on migrating the database cache and the state of active
transactions. In Albatross, the source takes a quick snapshot of a
cell’s cache and the destination warms up its cache with this snap-
shot. While the destination initializes its cache, the source con-
tinues executing transactions. The destination therefore lags the
source. Albatross uses an iterative phase where changes made to
the source node’s cache are iteratively copied to the destination.
When the same amount of data is being copied in consecutive iter-
ations or a maximum number of iterations is reached, transactions
are blocked at the source and an atomic handover completes migra-
tion. The state of active transactions is copied in the final handover
phase to allow them to resume execution at the destination which
already has a warmed cache.

Live migration is the ideal candidate for database migration and
is the hardest to implement. Asynchronous migration is at the other
end of the spectrum and the baseline form of migration in system
implementations not designed for migration, while synchronous

migration strikes a middle ground. Ideally, an autonomic DBMS
is aware of a cell’s service level agreement, and can leverage a mi-
gration form that minimizes the impact on performance.

4. AUTONOMIC CONTROLLER DESIGN
Selecting a multitenancy model is a primary consideration when

building a multitenant database. With distinct advantages for each

model, the tenant applications and usage requirements should drive
this decision. We target the shared instance model for its balance
between tenant isolation, component redundancy, performance, and
flexibility. The tenant isolation is critical for migration, data pri-
vacy, and customizable database settings such as isolation levels,
replication methods and recovery techniques. The reduced redun-
dancy allows for better tenant consolidation at a node. Having a
single database instance per node that manages all co-located ten-
ants provides the ability for the DBMS to fairly share resource ac-
cess between tenants and limits performance issues due to a lack
of coordination. The shared instance model allows for nodes to
run heterogeneous database engines. This is critical for platforms
and enterprises that support a variety of engines due to legacy ap-
plication requirements, acquisitions, licensing needs, or a lack of a
strong governance policy. This described environment is our target
platform. We first identify a set of goals, for building a flexible
multitenant DBMS, that are not met with current ‘out of the box’
open source database systems. We then describe our ongoing work
in building an elastic, autonomic, and multitenant database system
to meet our identified goals.

System Goals:

• Each tenant service level agreement are met. This guarantees
an uptime percentage and that ample computing resources
are available to respond to operations with in a factor of per-
formance on a dedicated node.

• Easily add tenants to the system with out interrupting exist-
ing tenants service.

• Identify resource consumption for a specific tenant, despite a
single instance pooling resources for multiple tenants.

• Rebalance tenants-to-node placement, or packing, to ensure
that all tenants have fair access to resources required to serve
requests, despite dynamic changes in tenant usage patterns.

• Minimize the impact of rebalancing on running tenants by
factoring migration costs and SLAs.

• Incorporate any DBMS type (relational, spatial, in memory,
key-value, object, etc.) to operate as a shared instance en-
gine. This requires the ability to provide usage statistics on
tenants and provide hooks, or APIs, to initiate tenant migra-
tion.

• Expand, or notify the need to expand, the number of nodes
in the system if unable to meet SLAs with the given set of
nodes.

• Dynamically partition, or shard, a tenant across multiple nodes
if needed.

We extend the architecture described by Yang et al. [23], with
a database system composed of a fleet of nodes, each running a
single DBMS hosting one or more tenants. A coordinating compo-
nent, iLandlord, controls tenant placement, monitors node health,
manages elasticity, and provides database connection information
for applications. Each node has a lightweight agent to report usage
statistics to the coordinator on demand. In order to achieve scal-
ability iLandlord can easily be implemented on a highly available
distributed system such as Zookeeper [15]. To prevent bottlenecks
by the coordinator, it is important that only meta, or system, data
moves through iLandlord, and that usage statistics are aggregated
at the node level and pulled by the coordinator. While research ex-
ists on optimizing sampling techniques to learn accurate models,
such as Shivam et al. [20], we leverage regular interval polling to
piggyback heartbeats to determine node availability.

iLandlord ensures that each node is not over or under utilized,
by regularly polling agents on each node to determine health and
resource consumption for all nodes and tenants. Replicas are ab-

Figure 1: Overview of the system’s architecture.

stracted and treated as regular tenants for modeling, as their re-
source consumption, while potentially lower, still affects node per-
formance and needs to be factored in rebalancing. Figure 1 demon-
strates interactions in the system, including clients obtaining meta
information from iLandlord for connection information, clients es-
tablishing connections directly to the nodes, and agents reporting
usage data to iLandlord.

Since the number of tenants hosted may scale into the thousands,
iLandlord should assist system administration by managing tenant
placement to ensure that SLAs are being met while minimizing the
number of nodes required. We leverage Machine learning machine
learning to automate iLandlord’s functionality. Tenants are classi-
fied into tenant types based on database agnostic attributes, such
as cache hit ratios, transaction length, cache coverage, throughput,
update ratios, etc. The intuition is that a tenant type roughly de-
scribes resources required to effectively serve a tenant. For exam-
ple, packing too many disk I/O intensive tenants on the same node
can cause service disruption due to disk contention; therefore ten-
ants are identified by operational requirements. Nodes are classi-
fied into types based on their resource consumption, such as CPU
utilization, disk I/O, memory usage, and network I/O. Based on the
training set of nodes, we can determine the degree a node is un-
der or over utilized, and if any rebalancing is required. Based on
tenant and node classifications, iLandlord, iteratively learns ideal
tenant packing schemes by observing the bag of tenant types on
healthy nodes5, and observing the effects of migrating cells from
over-utilized nodes or migrating cells to under utilized nodes. We
classify tenants based on a recent history of database attributes to
quickly determine when usage patterns change and to identify can-
didate cells to migrate for rebalancing. Additionally, the coordina-
tor determines if the additional, or fewer, nodes are needed in or-
der to meet all requirements; if deployed on an IaaS infrastructure,
changes in the number of nodes can be managed programmatically.

As a tenant’s resource requirements expand beyond the capac-
ity of a single node, a dynamic partitioning scheme and routing is
needed to shard the database based on workloads. While a frame-
work for iLandlord is in place, we are working with various orga-

5Node health is determined if resource consumption falls within
given levels and if all tenants are meeting service level agreements.
We allow these thresholds to be parameterized to allow flexibility
in how aggressive the system is in node utilization.

nizations to build accurate load generators that reflect realistic mul-
titenant workloads to determine the effectiveness of an autonomic
tenant placement controller. Additionally, we are experimenting
with modeling of tenants and migration impact to achieve efficient
and correct learning of tenant rebalancing.

5. CONCLUSION
Elasticity, and database migration to enable elasticity, is critical

for the efficient operation of scalable multitenant databases which
drive large cloud platforms. We expanded existing multitenancy
models and provided a coupling of these models to the various
cloud paradigms. We also formalized the forms of migration classi-
fications, introduced the concept of a cell to abstract the tenants and
the granule of migration, analyzed the trade-offs associated with the
different multitenancy models, and discussed migration techniques.

In summary, we observed that even though a shared table is
the most common form of multitenancy in a database, some other
lesser known models are more suitable for designing an elastic mul-
titenant DBMS. Furthermore, even though shared hardware pro-
vides the best isolation amongst tenants and allows near ideal mi-
gration, practical hardware limitations restrict the scale of such a
design in terms of number of tenants that can be hosted. Thus,
even though virtualization and virtual machine migration [7] have
been heavily studied from the systems perspective, the state-of-the-
art in virtualization for databases and migration of databases have
significant shortcomings which need to be addressed for design-
ing a scalable, fault-tolerant, elastic, and autonomic multitenant
database for scalable cloud platforms.

Projecting into the future, our observation is that migration tech-
niques should be embedded into the fabric of multitenant DBMSs
to allow efficient migration as supported by the shared hardware

model. Much of these shortcomings can be attributed to replicated
OS and DB processes which restrict the number of tenants due to
hardware limits. A system designed to scale to a large number of
clients should minimize redundancy.

The shared instance models minimize this redundancy, and we
aim to focus our efforts on these models. Evaluating the trade-
offs between the amount of redundancy and the degree of isolation,
and their impact on migration is an interesting research problem.
Furthermore, the scale of the cloud mandates autonomic migration
and management with minimal or no manual intervention and su-
pervision. Major research challenges for autonomic management
include modeling load patterns for determining the time for migra-
tion, and identifying the cells that need migration, thus leading to
systematic approaches to database migration to support elasticity.

6. REFERENCES

[1] Google App Engine.
http://code.google.com/appengine/, 2010.

[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.
Multi-tenant databases for software as a service:
schema-mapping techniques. In SIGMOD, pages 1195–1206,

[3] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. In CIDR, pages 223–234, 2011.

[4] P. A. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan,
G. Kakivaya, D. B. Lomet, R. Manner, L. Novik, and
T. Talius. Adapting Microsoft SQL Server for Cloud
Computing. In ICDE, pages 1255–1263, 2011.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg.
Live wide-area migration of virtual machines including local
persistent state. In VEE, pages 169–179, 2007.

[6] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa,
S. Soman, and R. Wolski. AppScale: Scalable and Open
AppEngine Application Development and Deployment. In
CloudComp, 2009.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. In NSDI, pages 273–286, 2005.

[8] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich. Relational Cloud: A
Database Service for the Cloud. In CIDR, pages 235–240,
2011.

[9] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan.
Workload-aware database monitoring and consolidation. In
SIGMOD, 2011.

[10] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi.
ElasTraS: An Elastic, Scalable, and Self Managing
Transactional Database for the Cloud. Technical Report
2010-04, CS, UCSB, 2010.

[11] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: Lightweight Elasticity in Shared Storage
Databases for the Cloud using Live Data Migration. PVLDB,
4(8):494–505, May 2011.

[12] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Zephyr:
Live Migration in Shared Nothing Databases for Elastic
Cloud Platforms. In SIGMOD, 2011.

[13] Facebook Developer Platform.
http://developers.facebook.com/, 2010.

[14] Facebook Statistics.
http://www.facebook.com/press/info.php?statistics,
Retreived Nov 30, 2010.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free Coordination for Internet-scale Systems. In
USENIX Annual Technical Conference, 2010.

[16] D. Jacobs and S. Aulbach. Ruminations on multi-tenant
databases. In BTW, pages 514–521, 2007.

[17] Joyent: Enterprise Class Cloud Computing.
http://www.joyent.com/, 2010.

[18] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu. Live migration of
virtual machine based on full system trace and replay. In
HPDC, pages 101–110, 2009.

[19] B. Reinwald. Database support for multi-tenant applications.
In IEEE Workshop on Information and Software as Services,
2010.

[20] P. Shivam, S. Babu, and J. S. Chase. Active sampling for
accelerated learning of performance models. In SysML, 2006.

[21] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. In SIGMOD, pages
953–966, 2008.

[22] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant internet application development
platform. In SIGMOD, pages 889–896, 2009.

[23] F. Yang, J. Shanmugasundaram, and R. Yerneni. A scalable
data platform for a large number of small applications. In
CIDR, 2009.

http://code.google.com/appengine/
http://developers.facebook.com/
http://www.facebook.com/press/info.php?statistics
http://www.joyent.com/

	Introduction
	Database Multitenancy
	Multitenancy Models
	Multitenancy for the Cloud
	Elastic and Autonomic Databases

	Forms of Database Migration
	Asynchronous migration
	Synchronous migration
	Live migration

	Autonomic Controller Design
	Conclusion
	References

