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In this paper we observe the extension of the vehicle routing problem (VRP) in fuel delivery that includes
petrol stations inventory management and which can be classified as the Inventory Routing Problem (IRP)
in fuel delivery. The objective of the IRP is to minimize the total cost of vehicle routing and inventory
management. We developed a Variable Neighborhood Search (VNS) heuristic for solving a multi-product
multi-period IRP in fuel delivery with multi-compartment homogeneous vehicles, and deterministic con-
sumption that varies with each petrol station and each fuel type. The stochastic VNS heuristic is compared
to a Mixed Integer Linear Programming (MILP) model and the deterministic ‘‘compartment transfer’’ (CT)
heuristic. For three different scale problems, with different vehicle types, the developed VNS heuristic out-
performs the deterministic CT heuristic. Also, for the smallest scale problem instances, the developed VNS
was capable of obtaining the near optimal and optimal solutions (the MILP model was able to solve only
the smallest scale problem instances).

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The transportation and inventories management have a deci-
sive influence on the effectiveness of the distribution process.
Although this fact is well known, modeling approaches to distribu-
tion process optimization usually consider inventory control and
transportation independently, neglecting their mutual impact.
However, the inter-relationship between the inventory allocation
and vehicle routing has recently motivated some authors to model
these two activities simultaneously by solving the Inventory Rout-
ing Problem (IRP). The objective of the IRP is to minimize the total
cost of vehicle routing and inventory management. Regardless of
the type and characteristics of the IRP an optimal solution for real
life problems is so far unreachable due to the problem complexity
which is related to simultaneous resolution of the routing problem
and the allocation of deliveries over an observed planning horizon.
The IRP assumes application of the VMI concept where suppliers
determine an order quantity and the time of delivery. The VMI con-
cept enables the supplier to better utilize the vehicles, but on the
other hand it shifts the responsibility of inventory management
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from clients to the supplier. There are many industries, including
the petrochemical industry where the VMI concept is applied,
and that can draw benefit from the integrated approach to the
IRP (Campbell & Savelsbergh, 2004). Recently, Bersani, Minciardi,
and Sacile (2010) discussed the VMI concept in distribution of pet-
rol products to service stations.

The vehicle routing problem (VRP) in fuel delivery is a well
known research area (Avella, Boccia, & Sforza, 2004; Boctor,
Renaud, & Cornillier, 2011; Brown, Ellis, Graves, & Ronen, 1987;
Brown & Graves, 1981; Bruggen, Gruson, & Salomon, 1995;
Cornillier, Boctor, Laporte, & Renaud, 2007, 2008; Fallahi, Prins, &
Calvo, 2008; Mendoza, Castanier, Gueret, Medaglia, & Velasco,
2010; Uzar & Catay, 2012) where the main objective is to minimize
the transportation costs incurred by the delivery of petroleum
products to a set of clients, usually trough the use of multi-com-
partment vehicles. In this paper we observe the extension of the
VRP in fuel delivery that includes petrol stations inventory
management. Hence, this problem can be classified as the IRP in
fuel delivery. More precisely, we observe secondary distribution
of different fuel types from one depot location to a set of petrol
stations by a designated fleet of multi-compartment vehicles, and
for which a single oil company has control over all of the manage-
rial decisions over all of the resources. This enables the VMI
concept, and therefore, the application of the IRP.

Bell et al. (1983) were among the first authors to observe the
IRP. They considered distribution of liquefied industrial gases and

http://dx.doi.org/10.1016/j.eswa.2012.05.064
mailto:   d.popovic@sf.bg.ac.rs
mailto:   m.vidovic@sf.bg.ac.rs
mailto: gordana.radivojevic@pupin.rs
http://dx.doi.org/10.1016/j.eswa.2012.05.064
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa
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used the linear programming model and Lagrangian relaxation to
obtain the delivery plan for short-term planning horizon. Re-
cently research efforts on the IRP topic have been intensified
(Coehlo, Cordeau, & Laporte, 2012; Li, Chen, & Chu, 2010; Li,
Chu, & Chen, 2011; Liu & Chen, 2011; Liu & Chung, 2009; Moin,
Salhi, & Aziz, 2011; Shen, Chu, & Chen, 2011; Stalhane et al.
2011; Yu, Chen, & Chu, 2008; Yu, Chu, Chen, & Chu, 2010;
Zachariadis, Tarantilis, & Kiranoudis, 2009) where in all of them
different heuristic approaches were developed for the purpose
of solving the larger scale problems. However, there seems to
be a lack of papers that considered the IRP with multi-compart-
ment vehicles, with the exception of papers from the marine
transport, for instance Siswanto, Essam, and Sarker (2011). Op-
pen, Lokketangen, and Desrosiers (2010) solved a multi-compart-
ment vehicle routing and inventory problem in the Livestock
Collection Problem (LCP) and Popovic, Bjelic, and Radivojevic
(2011) presented a simulation approach to the analysis of the
applicability of a deterministic IRP solution to real life stochastic
fuel consumption with fuel distribution by multi-compartment
vehicles. There are several papers from the IRP research area that
have considered Variable Neighborhood Search (VNS) heuristic
(Hemmelmayr, Doerner, Hartl, & Savelsbergh, 2009; Hemmelm-
ayr, Doerner, Hartl, & Savelsbergh, 2010; Liu & Chen, 2012; Liu
& Lee, 2011; Zao, Chen, & Zang, 2008), which was originally
developed by Mladenovic and Hansen (1997).

For an insight in methods and application of VNS we recom-
mend the paper by Hansen, Mladenovic, and Perez (2010). For a
detailed review on the IRP we refer the reader to the papers of
Moin and Salhi (2007) and Andersson, Hoff, Christiansen, Hasle,
and Lokketangen (2010). Also, case studies from the Netherlands
(Bruggen et al. 1995) and Hong Kong (Ng, Leung, Lam, & Pan,
2008) can give a detailed insight into the practical issues of the
IRP in fuel delivery.

In this paper we developed a Variable Neighborhood Search
(VNS) heuristic for solving a multi-product multi-period IRP in
fuel delivery with multi-compartment homogeneous vehicles,
and deterministic consumption that varies over each petrol sta-
tion and each fuel type. The local search and the shaking proce-
dure (as two central procedures of the VNS) are based on three
neighborhoods that are derived by the following changes of the
delivery plan: relocation of individual compartments; relocation
of all compartments for the observed station’s fuel type; and relo-
cation of all compartments for the observed station. The VNS heu-
ristic is compared to a Mixed Integer Linear Programming (MILP)
model and the deterministic ‘‘compartment transfer’’ (CT)
heuristic; both models were developed by Vidovic, Popovic, and
Ratkovic (2011).

This paper is organized as follows: The mathematical formula-
tion is given in Section 2. Section 3 presents a description of the
VNS heuristic. The computational results are presented in Section
4. Finally, conclusions are given in Section 5, together with direc-
tions for further research.
2. Mathematical formulation for the IRP in fuel delivery

The model assumptions are as follows:

� The delivery quantities of J fuel types for a given set of I petrol
stations must be determined for each day within the planning
horizon T;
� Fuel is transported by fleet of homogeneous multi-compart-

ment vehicles of unlimited size. The total number of compart-
ments is denoted as K. Only full compartments are delivered
to petrol stations;
� Every petrol station i has a constant consumption qij of each fuel
type j, while the intensity of the consumption varies over differ-
ent stations and different fuel types;
� Petrol stations are equipped with underground tanks of known

capacity Qij (one for each fuel type).
� Stations can be served only once a day (the observed time

period);
� It is not allowed that inventory levels in petrol stations for any

fuel type fall below their defined fuel consumption qij;
� The total inventory costs are assumed to be dependent on the

sum of the average stock levels in each day of the planning hori-
zon, whereas transport costs depend on a vehicle’s travel
distance;
� One vehicle can visit up to three stations per route. This con-

straint is a consequence of the vehicle compartments structure
and the total number of different fuel types (Cornillier et al.,
2007; Cornillier et al., 2008).

The proposed mathematical formulation can be represented as
the MILP model. The objective of the proposed MILP model is to
minimize the sum of total inventory (IC) and routing costs (RC).
Two types of binary decision variables are used for achieving this
objective. The first type of binary decision variable xijtk defines
the delivery quantities of all of the fuel types for all of the petrol
stations over the entire planning horizon.

xijtk ¼
1 �if petrol station i is supplied with fuel type j

in time period t with k compartments
0 �otherwise

8><
>:

The second type of binary decision variable includes ypqwt, ypqt,
and ypt which are used to define the existence of routes with
three, two, and one petrol stations, respectively, during each time
period t. Only unique variables are used in the model. For exam-
ple, variable y111t is not used because the direct delivery for sta-
tion ‘‘1’’ is represented with y1t. Additionally, variable y123t

represents all routes visiting stations ‘‘1’’, ‘‘2’’, and ‘‘3’’ (length of
this route is determined as the minimum length of all possible
visiting orders). Travel costs cr are calculated by multiplying min-
imum length and unit costs of the traveled distance for given
route.

ypqwt ¼
1 �if petrol stations p; q; andware supplied in

the same route in time period t

0 �otherwise

8><
>:

ypqt ¼
1 �if petrol stations p and q are supplied in

the same route in time period t
0 �otherwise

8><
>:

ypt ¼
1 �if petrol station p is supplied

with direct delivery in time period t

0 �otherwise

8><
>:

Because of the mutual dependency between the delivery quantity
variables and the routing variables, we have introduced an addi-
tional binary variable, Hit, that defines whether station i is being
served in time period t. The purpose of this variable is to allow only
those routes that visit petrol stations to be actually served in an ob-
served time period t.

Hit ¼
1 �if petrol station i is supplied

in time period t

0 �otherwise

8><
>:
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Indices:
i,p,q,w
 petrol stations (i,p,q,w e {1,2, . . ., I},)

j
 fuel types (j e {1,2, . . ., J})

t, z
 time period or day in the planning horizon T

(t, z e {1,2, . . .,T})

k
 number of compartments (k e {1,2, . . .,K})

dk
 delivery quantities (k e {1,2, . . .,K}) that correspond

to the total amount of delivered fuel
Parameters:
S0
ij
stock level of fuel type j at station i at the beginning of
the planning horizon
qij
 consumption of the fuel type j at station i

cinv
 inventory carrying costs per day

cr
 transportation costs per unit of traveled distance

Qij
 capacity of the underground reservoir for the fuel type j

at station i

rpqw
 minimum length of a route that includes petrol stations

p, q, and w

rpq
 minimum length of a route that includes petrol stations

p and w

rp
 minimum length of a route that includes only petrol

station p
Objective function:

Minimize! IC þ RC ð1Þ

IC ¼
XI

i¼1

XJ

j¼1

XT

t¼1

S0
ij � t � qij þ

qij

2

� �
þ
Xt

z¼1

XK

k¼1

xijzk � dk

 !
� cinv ð2Þ

RC ¼
XT

t¼1

XI

p¼1

ypt � rp þ
XI

q¼pþ1

ypqt � rpq þ
XI

w¼qþ1

ypqwt � rpqw

 ! !
� cr ð3Þ

The inventory segment (2) of the objective function is looking to
minimize the total inventory costs for the fuel stored in all of the
petrol stations during the observed planning horizon. Those costs
are based on the average daily inventory levels at the petrol sta-
tions. The routing segment (3) of the objective function is looking
to minimize the total travel distance of all routes that are used for
delivery during the observed planning horizon. The routing costs
are calculated as a sum of all travel costs incurred by deliveries in
the observed planning horizon.

Subject to:

S0
ij þ

Xz

t¼1

XK

k¼1

xijtk � dk �
Xz�1

t¼1

qij 6 Q ij 8i 2 I 8j 2 J 8z 2 T ð4Þ

S0
ij þ

Xz

t¼1

XK

k¼1

xijtk � dk �
Xz

t¼1

qij P qij 8i 2 I 8j 2 J 8z 2 T ð5Þ

ypt 6 Hpt 8t 2 T 8p 2 I ð6:1Þ

2 � ypqt 6 Hpt þ Hqt 8t 2 T 8ðp; qÞ 2 I2 for all p < q ð6:2Þ

3 �ypqwt6HptþHqtþHwt 8t2T 8ðp;q;wÞ2 I3 for all p<q<w ð6:3Þ

Hit 6
XJ

j¼1

XK

k¼1

xijtk 8t 2 T 8i 2 I ð7Þ
Hit P
1

J � K �
XJ

j¼1

XK

k¼1

xijtk 8t 2 T 8i 2 I ð8Þ

XI

p¼1

ypt þ
XI

q¼pþ1

2 � ypqt þ
XI

w¼qþ1

3 � ypqwt

 ! !
¼
XI

i¼1

Hit 8t 2 T ð9Þ

yit þ
XI

q¼iþ1

yiqt þ
XI

w¼qþ1

yiqwt

 !
þ
XI

p¼1

XI

i¼pþ1

ypit þ
XI

w¼iþ1

ypiwt

 !

þ
XI

p¼1

XI

q¼pþ1

XI

i¼qþ1

ypqit 6 1 8t 2 T 8i 2 I ð10Þ

XJ

j¼1

XK

k¼1

xijtk � k 6 K 8t 2 T 8i 2 I ð11Þ

XJ

j¼1

XK

k¼1

ðxpjtk þ xqjtkÞ � k 6 K � ð2� ypqtÞ 8t 2 T 8ðp; qÞ 2 I2

for all p < q ð12Þ

XJ

j¼1

XK

k¼1

ðxpjtk þ xqjtk þ xwjtkÞ � k 6 K � ð3� 2 � ypqwtÞ 8t 2 T

8ðp; q; eÞ 2 I3 for all p < q < w ð13Þ

Hit ; xijtk; ypqwt; ypqt ; ypt 2 f0;1g 8j 2 J 8t 2 T 8k 2 K

8i 2 I 8ðp; q;wÞ 2 I3 for all p < q < w ð14Þ

Constraints (4) limit the maximum quantity of a fuel type up to the
reservoir capacity in each of the observed time periods, and con-
straints (5) define the minimum quantity of a fuel type in a station’s
reservoirs that can meet the demand in the observed time period.
Constraints (6.1)–(6.3) define that a route can be performed if and
only if all of the petrol stations included in the route are to be
supplied on that day. Inequalities (7) and (8) define petrol
stations that need to be served. A petrol station needs to be served
if at least one compartment of at least one fuel type should be deliv-
ered. Constraints (9) assure that the number of stations served by
all of the routes is equal to the number of all of the stations that
need to be served. Constraints (10) limits the number of routes vis-
iting petrol station i in time period t to only one. Constraints (11)
prohibit multiple direct deliveries (vehicles serving only one station
in a single route) to one petrol station during the same day. If con-
straints (11) are omitted, then different fuel types can be delivered
to the same station, each in a quantity lower than the total vehicle
capacity. However, when the total number of compartments for all
of the fuel types delivered to the same station is greater than the
total vehicle capacity, then the station is visited more than once
in the same time period. Constraints (12) and (13) restrict the deliv-
ery quantity in each route serving more than one station to a max-
imum of K compartments in each day within the planning horizon.
For example, if one station has a delivery of two compartments,
then this station can be served either with direct delivery or to-
gether with the station whose delivery does not exceed the remain-
der of the vehicle’s capacity. Constraints (14) define the binary
nature of the variables.

3. Variable Neighborhood Search heuristic

The VNS algorithm, as a new metaheuristic concept, was devel-
oped by Mladenovic and Hansen (1997) with the basic idea of a
systematic change of a neighborhood within a local search algo-
rithm. This implies that several neighborhoods are used to search
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for the solution improvement. Each succeeding neighborhood
covers a larger search space. Shaking procedure is responsible for
obtaining a new starting point for a local search, within each
neighborhood. When a better solution is found, the current best
solution is updated and the VNS algorithm starts its search from
the first neighborhood. Different stopping criterions can be used:
computation time, number of iterations, etc. The steps of the basic
VNS algorithm are presented in Fig. 1.

In this paper, we use the VNS heuristic for solving the IRP in fuel
delivery, in which the Randomized Variable Neighborhood Descent
(RVND) method is used for local search procedure (step b in Fig. 1).
In the RVND, neighborhoods are randomly changed opposed to the
Variable Neighborhood Descent (VND) method where the change
of neighborhoods is performed in a deterministic way. In the follow-
ing three subsections we describe the procedures for obtaining the
initial solution, shaking procedure, and the RVND local search
procedure.
3.1. Initial solution

Usually, the initial solution can be obtained by some construc-
tive heuristic or one can use a random feasible solution. We tested
the VNS with three different initial solutions: solution obtained
from the inventory model (solution from MILP model presented
in this paper without the RC segment in the objective function);
solution obtained with the CT heuristic; and solution obtained
from the Reduced VNS where its initial solution is set as the solu-
tion from the inventory model (corresponds to the VNS without
the local search step). The best results from the VNS heuristic were
obtained with the initial solution derived from the CT heuristic.

A detailed description of the CT heuristic is given in Vidovic et al.
(2011) which we will use for the comparison with the proposed
VNS heuristic. In this paper we outline only the main features of
the deterministic CT heuristic. The CT heuristic is based on the idea
of solving the inventory model of the MILP model and iterative
change of the delivery plan by transferring the deliveries to be
realized one or a few days earlier (compartment transfers to days
ahead would incur inventory levels below consumption intensity).
To speed up the process of finding a better solution, the improve-
ment steps are evaluated by the use of eligibility calculation and,
on each day, only the E transfers that are the most eligible are ob-
served. Eligibility estimation is based on the values of the three cri-
teria: possibility of moving the delivery, change in the number of ‘‘to be
served’’ petrol stations, and spatial grouping of stations. Additionally,
in order to further improve the solution obtained from the CT heu-
ristic we apply the deterministic VND local search.

For the route construction procedure we use the Sweep method
(Gillet & Miller, 1974), in a somewhat modified form: routes are
being constructed starting from the station that has the biggest
‘‘polar’’ gap to its nearest preceding station. This Sweep Big Gap
method was proven to be effective for the multi-compartment
vehicle routing, according to Derigs et al. (2010).
Fig. 1. Steps of the VNS (Hans
3.2. Shaking procedure

The main problem of the IRP in fuel delivery is to allocate the
deliveries over the planning horizon so that the overall inventory
and routing costs are minimal. Therefore, shaking procedure in the
proposed VNS heuristic is based on the deliveries transfer between
days of planning horizon. Inventory model without routing costs
determines the total amount of compartments that needs to be
delivered in the observed planning horizon. Shaking procedure has
the task of changing only the time instants of each delivery. Delivery
plan structure implies three basic types of shaking: shaking of indi-
vidual compartments; shaking of all compartments of the same fuel
type in the observed station and day; shaking of all compartments in
the same station in the observed day. The fourth shaking procedure
simultaneously applies all of these three basic shaking procedures.
An example of shaking procedures is presented in Fig. 2.

Each shaking type can have neighborhoods with different trans-
fer quantities Tq expressed in percentages of all possible transfers.
We use an increasing list of these percentages to derive different
neighborhoods of increasing size. For example, in the entire plan-
ning horizon there can be 200 compartments in total for delivery
to 150 separate fuel types in 100 petrol stations. The 2% of all pos-
sible transfers neighborhood would incur 4 compartments transfer
for the ‘‘compartment’’ shaking, 3 separate fuel types transfer for
the ‘‘entire fuel type’’ shaking, and 2 petrol stations transfer for
the ‘‘entire station’’ shaking. By the transfer depth we are referring
to the number of days between the observed day and the day to
which transfer is being executed. The transfer depth can randomly
take value from one day to T � 1 for each transfer. The transfer can
be made either to earlier or to later days with regard to the
observed day. Each shaking move takes following steps: (1) ran-
domly choose the day from where the transfer will be made; (2)
randomly choose the transfer from this day; (3) randomly choose
the transfer depth (excluding the day from where the transfer is
made); (4) while chosen transfer incurs infeasible solution repeat
steps 1–3; (5) execute the transfer and repeat steps 1–5 until the
transfer of all required transfers from the current neighborhood.
The feasibility of the solution must be respected in all search pro-
cedures where this feasibility is also defined by the constraints of
the MILP model: minimum and maximum inventory level, vehicle
capacity, single route per vehicle, single delivery in each day for a
single station, and maximum three stops per route.
3.3. RVND local search

We use the RVND guided search with the first improvement
approach. This means that the first occurrence of improvement

in neighborhood search is accepted, and the search is repeated un-
til no more improvements can be found. A randomized change of
the neighborhoods gives more diversification to the local search.
Instead of using the same order of neighborhoods, we randomly
change this order after each shaking move. The RVND local search
has two levels: the micro level (intra-period search) where routes
en & Mladenovic, 2001).



Fig. 2. An example of four shaking methods of the delivery plan used in the VNS.

Fig. 3. An example of three methods for the neighborhoods construction in the intra-period VND search; used for routes improvement in each day of planning horizon.
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improvement is carried out in each day of planning horizon with
the aim of minimizing the vehicles traveled distance; and the
macro level (inter-period search) where we try to minimize the
total inventory and routing costs by the reallocation of deliveries
over the planning horizon.

For the local intra-period search, we used three neighborhood
structures to improve the routing of deliveries on each day of the
planning horizon: (1) the interchange of a single station between
two routes for the same day; (2) the removal of a single station
from one route and its insertion into another route for the same
day; and (3) 2-opt⁄, the removal of two arcs (one from each route)
and finding the best possible routes reconnections (Potvin & Rous-
seau, 1995). An example of three methods for neighborhoods con-
struction in the intra-period search is presented in Fig. 3. The local
intra-period search procedure for the improvement of vehicle rout-
ing is given in Algorithm 1.
Algorithm 1 RVND intra-period search procedure

solution Sweep_Big_Gap()
while improvement:

improvement False
Intra_neigh_set = [‘Stations_interchange’, ‘Removal/
insertion’, ‘2-opt⁄’]
Intra_neigh_set Randomize_order(Intra_neigh_set)
for N in Neigh_set:

if N = ‘Stations_interchange’:
for each pair of routes in all_routes:
for all feasible swaps of a pair of stations from two
routes:

if interchange incurs shorter routes:
improvement True
update The_routes
break to while
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if N = ’‘Removal/insertion’:
for route_from in all_routes:

for station in route_from:
for route_to in all_routes/route_from:

remove station from route_from and insert in
route_to

if solution is feasible and incurs shorter routes:
improvement True
update The_routes
break to while

if N = ’2-opt⁄’:
for route_1 in all_routes:

for route_2 in all_routes/route_1:
for arc_1 in route_1:

for arc_2 in route_2:
delete arc_1 and arc_2
make all feasible reconnections
if there exists reconnection with shorter
routes:

improvement True
update The_routes
break to while

For the inter-period search we use the same logic as in the shak-
ing procedure. The differences lie in the deterministic approach of
evaluating all possible solutions for the given value of the maxi-
mum transfer depth within three neighborhoods: the transfer of
individual compartments; the transfer of compartments from en-
tire fuel type; the transfer of compartments from entire station.
The inter-period search is given in Algorithm 2.

Algorithm 2 RVND inter-period search procedure

while improvement:
improvement False
Inter_neigh_set = [‘station compartments’, ‘fuel type
compartments’, ‘individual compartment’]
Inter_neigh_set Randomize_order(Inter_neigh_set)
for N in Neigh_set:

depth = 1
for day_from in planning_horizon:
for day_to in [day_from-depth: day_from+depth] /
day_from:

‘Move or not procedure’
for QN in The_Delivery_Plan[day_from]: ⁄

Temp_solution The_Delivery_Plan
remove QN from day_from in Temp_solution
insert QN in day_to in Temp_solution
if Temp _solution is feasible and incurs lower total
costs than The_Delivery_Plan:⁄⁄

improvement True
The_Delivery_Plan Temp _solution
break to while
temp day_from; day_from day_to;
day_to temp; repeat ‘Move or not procedure’
if depth < maximal_depth:

depth depth +1

⁄The QN denotes minimal unit of given neighborhood N (a compartment, all com-
partments for observed fuel type, all compartments for observed petrol station).
⁄⁄The calculation of the total costs for the Temp_solution requires routes con-
struction and improvement by intra-period search procedure for days with the
changes of the delivery quantities
The flowchart of the proposed VNS heuristic is presented in Fig. 4.
The stopping criterion becomes active in the case when the last
neighborhood in the last shaking procedure does not incur an
improvement of the current best solution.
4. Computational results

In order to evaluate the solutions obtained from the proposed
VNS heuristic, the CT heuristic, and the MILP model we have gen-
erated 10 instances of the smallest scale problem (the problem set
P1) that has 10 petrol stations and a 3 day planning horizon. The
larger scale problems are not suitable for the MILP model consider-
ing the computational time (for example, the instance 1 with
3 � 6t vehicle required more than 20 h of CPU to obtain the opti-
mal solution). Heuristic models were tested on following two lar-
ger scale problems (10 instances for each problem): the problem
set P2 that has 15 petrol stations and a 4 day planning horizon;
and the problem set P3 that has 20 petrol stations and a 5 day plan-
ning horizon. The heuristic parameters have following values: the
Tq takes value from the set (3,6,9,12,15,25,35,50,75,100) (in total
10 neighborhoods for each shaking type); the maximum transfer
depth for inter-period local search is 2 days; the eligibility E is 3,
4, and 5 for the problem sets P1, P2, and P3 respectively.

Instances for all three problem sets have the following parame-
ters. There are three fuel types (J = 3). Fuel consumption qij takes
values from the interval [1.0,2.0] with the probability of 0.4; from
the interval [2.0,3.0] with the probability of 0.4; and from the
interval [3.0,6.0] with the probability of 0.2 (fuel consumptions
are rounded to the first decimal place). The spatial coordinates of
the petrol stations are randomly generated in a square
[�50,50] km and the location of the depot is in the center of that
square (coordinates (0,0)). Routing costs cr are 2€ per traveled kilo-
meter and daily inventory carrying costs cinv are 1€ per ton of aver-
age daily inventory level. Stock levels of fuels S0

ij at the beginning of
the observed time period are generated randomly between 6 and
12t. All reservoir capacities Qij can hold up to 40t of fuel. Addition-
ally, we wanted to test the quality of models with three different
vehicle types: vehicles with 3 compartments of 6t; vehicles with
4 compartments of 6t; and vehicles with 5 compartments of 6t. Be-
cause of the stochastic nature of the VNS we solved each instance
of the P1 in 50 iterations, each instance of the P2 in 20 iterations
and each instance of the P3 in 10 iterations.

The MILP model was implemented through the CPLEX 12 on a
desktop PC with a 2.0 GHz Dual Core processor with 2 GB of RAM
memory. All of the input data needed for the model implementa-
tion as well as for the heuristics were implemented in Python 2.6.

The comparison of the results obtained from optimal and heuris-
tic models for the P1 instances are presented in Table 1. The solu-
tion from the CT heuristic is improved with the VND local search
(for the intra-tour search neighborhood the order is the stations
interchange, the removal/insertion, and the 2-opt⁄; for the inter-
period search neighborhood the order is the ‘‘station compart-
ments’’ transfer, the ‘‘fuel type compartments’’ transfer, and the
‘‘individual compartment’’ transfer). From Table 1 we can see that
the stochastic VNS heuristics incurs in average 0.271% higher total
costs than MILP model, while the deterministic CT heuristic incurs
2.451% higher total costs than MILP model. Both heuristic models
give the lowest error in the case with the 3 � 6t vehicle type, and
the highest error in the case with the 4 � 6t vehicle type.

The comparison of results obtained from stochastic VNS heuris-
tic and deterministic CT heuristic for the P2 and P3 instances are
presented in Table 2. Because P2 and P3 instances could not be
solved in reasonable time by the MILP model, the error stands
for difference between the average total cost obtained by VNS
and the cost obtained by CT heuristic. VNS heuristics gives in aver-



Fig. 4. The flowchart of the VNS.

Table 1
The results for the P1 instances.

Vehicle Inst. MILP model VNS heuristic CT heuristic

Cost CPU (s) Avg. cost Min. cost Avg. Error (%) Avg. CPU (s) Cost Error (%) CPU (s)

3 � 6t 1 3500.9 111.2 3506.8 3500.9 0.167 9.0 3507.8 0.195 1.1
2 3495.3 62.9 3508.7 3495.3 0.383 14.8 3551.0 1.593 1.1
3 3047.4 5.5 3052.0 3047.4 0.151 6.3 3113.1 2.158 0.9
4 2951.5 46.7 2952.1 2951.5 0.020 11.1 3076.3 4.231 1.0
5 2827.1 4.1 2827.1 2827.1 0.000 5.4 2827.1 0.000 0.9
6 3490.8 27.0 3496.6 3490.8 0.166 11.9 3516.9 0.747 1.0
7 4564.4 27.8 4572.8 4564.4 0.183 13.4 4661.6 2.129 1.0
8 3068.9 5.8 3068.9 3068.9 0.000 7.6 3086.8 0.583 0.9
9 2958.5 260.8 2965.1 2958.5 0.223 13.3 3081.7 4.162 0.9
10 3105.8 1041.2 3105.8 3105.8 0.000 8.9 3105.8 0.000 1.0
Avg. 3301.1 159.3 3305.6 2827.1 0.129 10.2 3352.8 1.580 1.0

4 � 6t 1 2996.0 143.1 3007.4 2996.0 0.380 11.4 3153.6 5.259 1.1
2 3049.9 403.7 3068.8 3052.7 0.620 25.2 3127.7 2.553 1.2
3 2666.4 35.0 2684.0 2672.6 0.660 12.1 2702.0 1.336 1.0
4 2563.1 150.8 2575.9 2563.1 0.498 12.6 2658.9 3.736 1.1
5 2462.3 16.5 2490.5 2470.0 1.144 12.0 2536.1 2.997 1.1
6 3087.3 200.8 3091.4 3087.3 0.134 17.8 3150.1 2.036 1.1
7 3705.6 928.6 3711.0 3705.6 0.145 19.3 3975.8 7.292 1.2
8 2732.2 68.4 2732.2 2732.2 0.000 15.1 2736.9 0.171 1.3
9 2611.2 2774.6 2616.3 2611.2 0.193 18.6 2636.4 0.964 1.1
10 2656.5 565.8 2664.0 2656.5 0.281 16.7 2779.9 4.644 1.1
Avg. 2853.1 528.7 2864.1 2470.0 0.406 16.1 2945.7 3.099 1.1

5 � 6t 1 2654.9 113.3 2654.9 2654.9 0.000 11.4 2684.9 1.130 1.2
2 2767.1 1023.0 2773.6 2767.1 0.234 27.1 2937.1 6.144 1.3
3 2376.4 40.2 2396.3 2376.4 0.840 17.0 2414.2 1.592 1.3
4 2267.4 111.8 2267.4 2267.4 0.000 15.5 2267.4 0.000 1.3
5 2164.2 9.2 2165.0 2164.2 0.037 13.5 2293.3 5.967 1.1
6 2593.0 24.4 2593.0 2593.0 0.000 15.6 2599.0 0.231 1.2
7 3402.5 2768.3 3434.5 3402.5 0.942 30.4 3454.8 1.537 1.5
8 2468.4 49.3 2468.4 2468.4 0.000 23.3 2641.4 7.008 1.2
9 2304.2 617.9 2304.6 2304.2 0.019 17.4 2335.5 1.360 1.2
10 2327.9 255.7 2344.5 2327.9 0.713 14.5 2369.2 1.775 1.1
Avg. 2532.6 501.3 2540.2 2164.2 0.279 18.6 2599.7 2.674 1.2

Total avg. 2895.6 396.4 2903.3 2164.2 0.271 14.9 2966.1 2.451 1.1
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Table 2
The results for the P2 and P3 instances.

Vehicle Inst. P2 P3

VNS heuristic CT heuristic VNS heuristic CT heuristic

Avg.
cost

Min.
cost

Avg. CPU
(s)

Cost Avg. Error
(%)

CPU
(s)

Avg.
cost

Min.
cost

Avg. CPU
(s)

Cost Avg. Error
(%)

CPU
(s)

3 � 6t 1 7005.3 7002.0 73.3 7055.9 0.723 2.7 12246.2 12199.8 641.9 12376.9 1.067 12.3
2 6977.0 6959.9 59.6 6987.9 0.156 2.6 11715.0 11712.6 386.3 11715.3 0.002 9.1
3 5292.4 5275.0 59.6 5326.0 0.636 2.4 9791.2 9755.4 763.2 10023.1 2.369 6.8
4 5390.2 5377.4 65.0 5482.1 1.705 2.6 9858.3 9801.5 464.9 9908.0 0.504 10.5
5 6774.0 6745.1 66.3 6813.9 0.588 2.6 10453.1 10346.1 669.8 10759.9 2.935 7.7
6 6977.1 6967.1 49.2 7198.9 3.179 2.9 11672.5 11604.4 601.2 11888.2 1.848 10.0
7 8019.4 8007.5 90.7 8098.3 0.984 3.1 13022.7 12953.8 794.8 13285.0 2.014 6.9
8 6162.6 6158.5 39.5 6238.7 1.236 1.7 10343.5 10312.7 488.4 10451.6 1.045 8.9
9 5950.8 5937.9 53.8 6047.9 1.632 2.4 10214.6 10173.8 491.7 10437.1 2.178 7.4
10 6065.9 6055.0 61.3 6135.6 1.148 2.3 9867.2 9832.0 529.2 9900.3 0.335 9.7
Avg. 6461.5 6448.5 61.8 6538.5 1.199 2.5 10918.4 10869.2 583.1 11074.5 1.430 8.9

4 � 6t 1 5943.5 5908.9 206.6 6110.5 2.810 3.5 10428.2 10340.6 1654.1 10892.5 4.453 48.2
2 5994.9 5952.9 198.2 6140.6 2.430 7.9 10022.6 9978.9 1956.5 10324.8 3.015 34.7
3 4618.7 4589.2 108.7 4696.0 1.673 3.3 8374.9 8293.9 1175.1 8466.8 1.097 16.7
4 4687.2 4657.6 186.3 4809.4 2.606 5.0 8469.1 8432.1 1008.8 8715.2 2.906 21.8
5 5716.4 5677.6 161.6 5937.0 3.859 3.7 8970.0 8905.1 1277.6 9244.7 3.062 18.4
6 5980.6 5942.9 149.2 6127.1 2.450 3.6 10062.6 9996.5 1245.4 10232.4 1.687 27.9
7 6837.4 6771.4 151.3 7036.0 2.904 4.1 10878.3 10779.6 1983.7 11205.6 3.009 23.0
8 5233.9 5218.9 94.6 5295.7 1.182 3.8 8953.4 8909.2 1404.4 9089.6 1.521 61.5
9 5169.1 5122.5 145.6 5469.5 5.811 4.7 8835.4 8749.2 1652.6 8989.5 1.744 32.4
10 5189.1 5150.6 156.1 5554.8 7.047 3.7 8525.7 8451.6 1214.5 8758.2 2.728 22.5
Avg. 5537.1 5499.3 155.8 5717.7 3.277 4.3 9352.0 9283.7 1457.3 9591.9 2.522 30.7

5 � 6t 1 5254.9 5166.9 356.1 5363.6 2.069 4.8 9233.2 9150.5 3657.0 9599.1 3.963 60.9
2 5341.3 5313.6 333.4 5572.9 4.336 5.7 8937.2 8881.5 3598.2 9267.4 3.695 41.8
3 4198.1 4173.0 228.5 4286.0 2.095 7.4 7516.6 7428.6 3177.0 7878.8 4.818 54.3
4 4233.9 4208.9 263.2 4532.4 7.050 5.6 7612.9 7524.0 2774.5 8066.2 5.954 53.4
5 5072.5 5037.4 271.2 5243.9 3.379 8.0 7981.6 7919.1 2844.2 8083.1 1.271 52.7
6 5433.3 5397.3 225.4 5555.8 2.255 6.0 8885.8 8830.3 2408.8 9046.7 1.811 39.9
7 5956.5 5924.6 336.1 6026.0 1.167 9.5 9628.0 9525.6 5658.6 9786.8 1.650 86.0
8 4731.2 4691.4 265.7 5074.5 7.257 7.5 7956.6 7828.7 2712.7 8336.8 4.779 41.1
9 4730.4 4687.6 215.4 4788.9 1.236 6.2 7917.3 7830.7 3064.1 8092.4 2.211 50.4
10 4680.0 4647.3 247.6 4818.8 2.966 4.5 7563.1 7497.5 2016.1 7814.1 3.319 30.9
Avg. 4963.2 4924.8 274.3 5126.3 3.381 6.5 8323.2 8241.6 3191.1 8597.1 3.347 51.1

Total avg. 5653.9 5624.2 164.0 5794.2 2.619 4.5 9531.2 9464.8 1743.8 9754.5 2.433 30.3
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age 2.619% and 2.433% lower total costs than the CT heuristic, for
the P2 and P3 respectively. Both heuristic models give lowest error
in the case with the 3 � 6t vehicle type, and the highest error in the
case with the 5 � 6t vehicle type. At the same time, total inventory
and routing costs are decreasing and computational time is
increasing with the increase of the number of vehicle’s compart-
ments (for all three problem sets).
5. Conclusions

In this paper we developed the VNS heuristic model for solving
the multi-period multi-product IRP in fuel delivery with multi-
compartment homogenous vehicles. This stochastic VNS heuristic
is compared to deterministic CT heuristic and to the optimal MILP
model. For the P1 problem instances, VNS heuristic was able to find
optimal solution for 27 out of 30 instances. The stochastic VNS
heuristic showed better results than the deterministic CT heuristic
in 87 out of 90 instances for all three problem sets (for only three
instances of P1 problem set both VNS and CT heuristics found opti-
mal solution).

Future research should be focused on the heterogeneous vehicle
fleet and stochastic nature of the IRP. The model extensions by con-
sidering these factors can enrich and bring the IRP model closer to
the real life conditions.
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