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Abstract

In the last years, Internet of Things (IoT) and Big Data platforms are clearly converging in terms of technologies, problems and

approaches. IoT ecosystems generate a vast amount of data that needs to be stored and processed, becoming a Big Data problem. In

this paper we present a platform that is specifically designed for mining the information associated to the IoT, including both sensors

data and meta-data. The platform is composed of two major components: servIoTicy for storing and processing data, and iServe for

the publication and discovery of sensors meta-data. The former provides capabilities to ingest, transform on real time and query data

generated by sensors; the latter provides capabilities to publish, discover and use sensors based on semantic information associated

to them. Both components are clearly designed for scalability, as any IoT cloud deployment requires. Both servIoTicy and iServe

are available as an open source projects.
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1. Introduction

In the last years, Internet of Things (IoT) and Big Data platforms are clearly converging in terms of technologies,

problems and approaches. IoT ecosystems generate a vast amount of data that needs to be stored and processed,

becoming a Big Data problem. IoT devices and sensors generate streams of data across a diversity of locations and

protocols that in the end reach a central platform that is used to store and process it. Processing can be done in real time,

with transformations and enrichment happening on-the-fly, but it can also happen after data is stored and organised

in repositories. In the former case, stream processing technologies are required to operate on the data; in the latter

analytics and queries are of common use.

At the same time, the IoT ecosystem growth forecast is that by 2020 more than 50 billion devices will be connected

and accessible. Therefore, discovering devices will become also a Big Data challenge, and will require extremely

scalable technologies to manage all the semantic data associated to them.

The above-mentioned situation implies that there is an increasing demand for advanced IoT data management and

processing platforms. Such platforms require support for multiple protocols at the edge for extended connectivity with
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the objects, but also need to exhibit uniform internal data organisation and advanced data processing capabilities to

fulfil the demands of the application and services that consume IoT data, as well as mechanisms to store and query

semantic information associated to the devices.

Advanced streaming and analytics platforms such as servIoTicy and iServe are complex pieces of software that

integrate a large set of components under the hood. They hide their complexity behind simple REST APIs and

multi-protocol channels, but the reality is that their deployment and configuration is complex. The platform described

by this paper is part of the developments of the COMPOSE1 project, which aims to develop a more ambitious IoT

platform, not only focused on the data management and processing part, but including other aspects such as security,

discovery of objects, development tools and composition engines. The sources of the servIoTicy and iServe are freely

available as an open source projects1 on GitHub. The platform is also available for single node testing as a vagrant box,

downloadable from a github repository2.

The next sections of the paper are organised as follows: Section 2 introduces a set of abstractions defined in

servIoTicy for managing data associated to objects; Section 3 introduces the general architecture and components of

iServe; Section 4 describes how iServe has been adapted to index and locate IoT resources stored in servIoTicy; Finally,

Section 5 goes through the related work.

2. servIoTicy: Stream Processing and Data Analytics

servIoTicy3 is a state-of-the-art platform for hosting Internet of Things (IoT) workloads in the Cloud. It provides

multi-tenant data stream processing capabilities, a REST API, data analytics, advanced queries and multi-protocol

support in a combination of advanced data-centric services. ServIoTicy aims to provide a technological platform

for easily creating services based on the Internet of Things (IoT), thus unleashing the full potential of an Internet of

Services (IoS) based on the IoT. The main focus of servIoTicy is to provide a rich set of features to store and process

data through it REST API, allowing objects, services and humans to access the information produced by the devices

connected to the platform. servIoTicy allows for a real time processing of device-generated data, and enables for simple

creation of data transformation pipelines using user generated logic. Unlike traditional service composition approaches,

usually focused on addressing the problems of functional composition of existing services, one of the goals of the

servIoTicy is to focus on data processing scalability.

The architecture of servIoTicy is composed of different elements. The Front-End of platform is a Web Tier that

implements the REST API that sits at the core of servIoTicy. The API contains parts of the logic of the Service

Objects and Data Processing Pipelines, related to authentication, data storage and data retrieval actions. The Stream

Processing Topology is responsible for the execution of the code associated to Data Processing pipes as well as the

forwarding of data across Service Objects and to external entities (e.g. external subscribers that want data forwarded on

real-time using a push model on top of MQTT or STOMP). Finally, the data Back-End includes the Data Store that

provides scalable, distributed and fault-tolerant properties to servIoTicy, and the Indexing Engine that provides search

capabilities across sensors data using different criteria, like timestamps, string patterns or geo-location.

At the core of the servIoTicy runtime there is a novel technique to dynamically construct data stream processing

topologies based on user-supplied codes. These topologies are built on-the-fly using a data subscription model defined

by the applications that consume data. Each user-defined processing unit is called a Service Object, and each Service

Object consumes input data streams and may produce output streams that others can consume. Data streams can

originate in real-world devices or they can the outputs of Service Objects deployed in the platform.

Several abstractions are used in servIoTicy to embrace the different entities involved in the existence of IoT

ecosystems.

• Web Object: Web Objects are physical objects sitting on the edge of the servIoTicy and capable of keeping

for example HTTP-based bi-directional communications, such that the object will be able to both send data to

1 servIoTicy: https://github.com/servioticy; iServe: https://github.com/kmi/iserve
2 https://github.com/servioticy/servioticy-vagrant
3 servIoTicy.com
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the platform and receive activation requests and notifications. Not all such objects will support the same set of

operations, but a minimum subset will have to be guaranteed to make them usable servIoTicy.

• Service Object: Service Objects are standard internal servIoTicy representations of Web Objects. This entity

serves mainly for data management purposes and has a well-defined and closed API4 that provides search capa-

bilities across sensors data using different criteria, like timestamps, string patterns or geo-location. ServIoTicy, in

an effort to embrace as many IoT transports as possible, allows Web Objects to interact with their representatives

in the Platform (the Service Objects) using a set of well-known protocols: HTTP, STOMP2 over TCP, STOMP

over WebSockets3, and MQTT4 over TCP.

• Data Processing Pipeline: A Data Processing Pipeline is a data service and aggregation mechanism, which relies

on the data processing and management back-end component to provide complex computations resulting from

subscriptions to different Service Objects as data sources. This construct can support pseudo-real time data

stream transformations, combined with queries concerning historical data. Data analytics code defined by the

user may be provided as well. Just like a Service Object, this entity serves mainly for data management purposes

and has a well-defined and closed API.

• Subscription: Data subscriptions are a mechanism in servIoTicy that allow Service Objects, Data Processing

Pipelines and external data consumers to get data updates automatically and asynchronously forwarded for

further processing.

• Sensor Update: Sensor Updates are the unit of data sent by a Web Object to its Service Object. It contains the

different synchronously sensed values and a timestamp that is maintained all over the pipelines. A subscription

or a query to a Service Object will get the data in this format.

3. iServe: Mining Sematic Meta-data

iServe, previously introduced in5, is an open source platform5 that unifies the publication, discovery, and use of

Web Services (e.g., WSDL services), Web APIs (e.g., Twitter API, Flickr API, etc), and Things available on the Web.

iServe is, to the best of our knowledge, the first platform to provide this level of support homogeneously across types of

devices and software interfaces, providing a convenient one-stop-shop for the location and use of distributed software

building blocks as necessary for creating novel Web and IoT applications.

iServe exploits and expands state of the art research and development from a number of fields. From a data

acquisition perspective, the platform includes several import plugins providing the platform with the ability to ingest,

process, and index interface descriptions in several formalisms including WSDL, SAWSDL, Swagger6, OWL-S and

WSMO-Lite to name a few7. Additionally, Machine Learning techniques are used to support the automated discovery

of Web APIs over the Web by automatically identifying Web pages that provide technical documentation of these

APIs8. Subsequently specific Web Mining techniques have been devised to automatically extract important features

from these descriptions such as the functionality provided, the endpoints, etc9. The aforementioned processes are fed

by a Web crawl, namely CommonCrawl6, which is processed using a combination of Hadoop and Mahout jobs to

support their efficient processing.

Once imported, all descriptions are homogenised into a common representation expressed in terms of an ontology

called the Minimal Service Model (MSM)5. This ontology essentially provides a common ground for describing

i) the overall structure of the interface exposed by a Web API or a Thing including aspects like the operations or

resources exposed, ii) human-oriented information such as a text-based descriptions about the component at hand, and

iii) machine-oriented descriptions of the components including semantic annotations about the type of component, the

functionality offered, or the semantics of the data manipulated.

Every Web Service, Web API, and Thing are homogeneously described as services expressed in terms of MSM.

iServe exposes services publicly following the Linked Data principles, which essentially dictate that every piece of data

should be given an HTTP URI which, when looked up, should offer useful information using standards like RDF and

SPARQL10. Additionally, data should be linked to other relevant resources therefore allowing humans and computers

4 docs.servioticy.com
5 http://iserve.kmi.open.ac.uk
6 http://commoncrawl.org
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to discover additional information. In a nutshell, adopting Linked Data principles enables both humans and machines to

seamlessly retrieve and process the descriptions of the software components indexed by iServe in a convenient manner.

After import, iServe tries to enrich the data with external information. Currently, for instance, iServe attempts to

identify the provider of the service, and tries to interlink it with two large Linked Data datasets, i.e., DBPedia and

Yago, so that we can leverage external information about the provider to assess, for instance, how trust worthy or stable

a service might be. Similarly, we enrich the descriptions with annotations to Schema.org Actions, providing in this

manner a coarse-grained classification for the registered services in terms of a widely used schema.

The descriptions gathered by iServe represent the common grounds upon which the platform offers advanced support

for the discovery and use of the registered components. In particular, iServe implements a range of search and retrieval

facilities allowing users to filter and rank all registered services according to several criteria. First and foremost the

platform relies on Lucene for supporting text-based search over the entities registered. Additionally, the platform offers

state-of-the-art semantic discovery by reasoning over semantic annotations whenever they exist may they be general

classifications (e.g., with Schema.org) or semantic annotations of inputs and outputs. These discovery features are

enhanced with further facilities ranking the results by taking into account other aspects such as the popularity of a given

component or how active the community behind it is.

The entire functionality of iServe is offered both through a human-oriented Web interface based on Elda7, as well as

through a RESTful API offering a convenient integration point to external applications.

4. Indexing the IoT ecosystem: iServe on servIoTicy

Thus far, most data acquisition effort in iServe has been devoted to locating and indexing services and public Web

APIs. The increasing popularity of the Internet of Things is, however, at the origin of an outstanding proliferation

of Internet accessible sensors and actuators. Although, this newer kind of distributed components typically relies on

different protocols and technologies (e.g., ZigBee), most often in an attempt to simplify and promote their use, they end

up being exposed on the Web either directly or through gateways and cloud services such as Xively and ServIoTicy. In

the light of this proliferation of Things on the Web, we have also started providing support for them.

In a first instance we are targeting cloud services for they typically expose large numbers of sensors and actuators. In

these cases the data and actuations offered by Things are all exposed through one common Web API, which is indeed

dependent on the platform at hand. Although iServe already provides advanced support for Web APIs, it is worth

noting that the handling of IoT platforms should be approached differently. In particular, in the case of a “traditional”

Web API, e.g., Flickr’s API, the Web API as a whole can be understood as one service providing a more or less large

set of operations or resources that are closely related, e.g., all methods are about the same collection of images, and the

data is all exposed by the same provider. In the case of cloud platforms for the Internet of Things, each and everyone of

the Things exposed is best considered as a single stand alone entity. After all, a temperature sensor in London has

hardly any relationship with a traffic sensor in Rome, and they should therefore be handled as distinct and separately

manageable entities. In fact, for the case of cloud services for the Internet of Things, perhaps the main and often unique

relationship is that they are exposed through the same platform using a common API scheme.

Following this approach, we have developed a targeted crawler and importer for ServIoTicy, see 1. In a nutshell the

crawler uses a dedicated ServIoTicy API to list all Things and obtain their descriptions. The ServIoTicy descriptions

are then used to generate a corresponding Thing-centric Swagger description, whereby every stream and actuation

is a resource offering the typical CRUD methods all correctly grounded into ServIoTicy’s Web API. This approach

enables users to have fine-grained (stream level) interactions with Things. Additionally, we generate at this stage basic

metadata such as names, and descriptions for methods and resources. After this transformation, we import all Swagger

descriptions in iServe which stores and indexes them and subsequently transforms them into MSM for ulterior semantic

enrichment and exploitation within advanced discovery algorithms.

This integration, on the one hand, provides ServIoTicy with high-level search functionality over the Things it hosts.

On the other hand, it also enables 3rd party application developers to rely on iServe for discovering and using Web

Services, Web APIs, and Things homogeneously. For instance, users can directly use iServe’s interactive documentation

7 https://github.com/epimorphics/elda
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Fig. 1. Targeted crawling and indexing of ServIoTicy.

for the services it indexes in order to test Things from ServIoTicy or they can directly use these Things within editing

environments such as NodeRed through a dedicated generic node8.

The ServIoTicy importer (see Figure 1) interacts with ServIoTicy APIs in order to build a Swagger description for

each service, which provides access to functionalities of a specific thing. The process of Swagger creation is based

on three steps. The first one is the identification of the things that are registered in ServIoTicy, then the skeleton of a

Swagger description is built for each of them. The second step is the extraction of the thing metadata, such as name

and descriptions in natural language. This information becomes the metadata of each Swagger service, which will

be exploited to perform free text search over things. The third step focuses on stream and actuation modelling. Each

stream and actuation is transformed in an Web API described in terms of the Swagger specification. A Swagger API

represents a main RESTful resource of the service. We choose to list streams and actuations as static service resources

for two objectives: (i) to allow developers to browse the complete list of streams and actuations by accessing Swagger

descriptions and avoiding additional interaction with ServIoTicy; (ii) to enable discovery of streams and actuation as

discrete reusable operations. Stream and actuation names are used as Swagger APIs descriptions in order to enable free

text search on operations.

After the import, Swagger descriptions are stored in iServe and transformed into semantic descriptions according

to the Minimal Service Model (MSM). Each Swagger description is mapped to a MSM service, each operation of

Swagger API is converted to MSM operations and each parameter becomes a MSM message part. The resulting MSM

descriptions enables advanced semantic discovery of things as services.

5. Related Work

Data Centric view of the IoT is not something new for servIoTicy as it was widely covered in the survey presented

in11. What servIoTicy uniquely provides is an open source solution that challenges the features of commercial solutions

such as Xively12 and Evrythng13, while extending their capabilities with the ability to inject user-defined code into its

stream processing runtime. There are other open source platforms for IoT in the market similar to servIoTicy, but they

are focused on other aspects of the Internet of Things and do not provide the capability to deploy user codes to be used

for real time data processing. Examples of projects in this domain are DeviceHive14, Devicehub.net15, IoT Toolkit16,

Mango17, Nimbits18, OpenRemote19, SiteWhere20 and ThingSpeak21.

The discovery of reusable services has been subject of much research in Service-Oriented Computing (SOC).

Although it was not particularly successful, UDDI22 is perhaps the best-known effort to support the publication and

discovery of services on the Web. A major reason for the lack of success of UDDI was the fact that, although these

registries are relatively complex, they do not support expressive queries, limiting their usefulness23. Semantic Web

Services researchers have long tried to overcome the limitations of Web service descriptions by enriching them with

semantic annotations, see24,25,26.

8 See https://github.com/kmi/node-red-contrib-swagger
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The vast majority of the service discovery initiatives are predicated upon the availability of WSDL Web services,

and these have turned out not to be prevalent on the Web27. The world of services on the Web has recently seen a major

evolution with the advent and proliferation of Web APIs and RESTful services28. Little progress has, however, been

done towards better supporting their discovery and use the main example being ProgrammableWeb. This platform,

however, although valuable is essentially based on manual contributions by users and provides fairly limited search

capabilities that prevent its systematic use for developing distributed applications.

The results and expertise obtained through iServe on SOC research allow us to overcome limits existing solutions

for discovery of Things. Commercial IoT platform, such as Xilvely12, and domain-specific sensors catalogs, such

as the Esonet data portal29 implement discovery of Things exclusively through text-based search. State-of-the-art

discovery approaches based on Semantic Web technologies30,31,32 require manual annotation of sensor metadata and do

not support discovery of external services and Web APIs.
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